Cmr đa thức sau ko có nghiệm:
P(x)= x^2+1
Các bạn giúp mình trả lời bài tập toán 7 này nhé. Ai trả lời sớm mình tick nhé
CMR: x^2-2x+x không có nghiệm
Mình có 1 cách làm là lấy từng hạng tử của đa thức này đem so sánh với 0 rồi suy ra đa thức này lớn hơn 0 => đa thức vô nghiệm
Mình ko biết đúng ko các bạn giúp mình nhé ^.^ Thank u
Bạn ơi bạn làm sai rùi vs lại bạn xem lại đề đi tại vì pt trên nếu giải ra sẽ có hai nghiệp là x=1, x=0 nha bạn
CMR: đa thức f(x) có ít nhất 2 nghiệm biết x. f( x+1)=(x+3). f(x)
*Với x=0
=> x.f(x+1) = 0.f(1)=0
=(x+3) . f(x) = 3.f(0) =0
=> f(0)=0 thì 3.f(0)=0
=> 0 là nghiệm của đa thức f(x)
* Với x=-3
=> (x+3).f(x) = (-3+3). f(-3) = 0
=> -3.f(-2) =0
=> f(-2) = thì -3.f(-2) =0
=> -2 là nghiệm của đa thức f(x)
VẬY: Đa thức f(x) có ít nhất 2 nghiệm
đúng cái nha
Chứng tỏ đa thức sau ko có nghiệm. x3-x+7
Sửa đề: x2 - x + 7
Giải:
\(x^2-x+7=x^2-2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{27}{4}\)
\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{27}{4}\)
Ta có: \(\left(x-\dfrac{1}{2}\right)^2\ge0\forall x\)
\(\Rightarrow\left(x-\dfrac{1}{2}\right)^2+\dfrac{27}{4}>0\)
=> đa thức vô nghiệm (đpcm)
Giúp mình nha
Cho đa thức f(x) = ax2+bx+c
a, cho bt 5a-b+2c=0. CMR f(1).f(2) bé hơn hoặc bằng 0
b, Cho a=1, b=2,c=3. CMR khi đó đa thức f(x) không có nghiệm
a) \(f\left(1\right)=a.1^2+b.1+c\)
\(=a+b+c\)
\(f\left(-2\right)=a.\left(-2\right)^2+b.\left(-2\right)+c\)
\(=4a-2b+c\)
\(\Rightarrow f\left(1\right)+f\left(-2\right)=a+b+c+5a-2b+c\)
\(=5a-b+2c=0\)
\(\Rightarrow f\left(1\right)=-f\left(-2\right)\)
\(\Rightarrow f\left(1\right).f\left(-2\right)\le0\)
b) Thay a=1 ; b=2 ; c=3 vào đa thức f(x) ta được
\(f\left(x\right)=x^2+2x+3\)
\(=\left(x+1\right)^2+2\ge2\forall x\)
Vậy đa thức f(x) vô nghiệm
CMR đa thức f(x)=x2 - 2x + 2 không có nghiệm
f(x )= x2-2x+2
=x2-2x+12+1
=(x-1)2 +1
Ta có: (x-1)2>=0
1>0
Vậy f(x) vô nghiệm
k mk nha. Chúc bạn học giỏi
Thank you
\(x^2-2x+2=x^2-2x+1+1=\left(x-1\right)^2+1>0\)
Xét đa thức f(x)=ax^2+bx+c. CMR nếu f(x) có 3 nghiệm khác nhau x1,x2,x3 thì a=b=c=0
CMR với mọi x thì đa thức f(x)=x6-x5+x4-x3+x2-x+1 luôn có giá trị dương
Chia làm 3 khoảng để xét.
Khoảng thứ nhất:\(x< 0\)
Khi đó:\(f\left(x\right)=x^6-x^5+x^4-x^3+x^2-x+1\)
\(=x^5\left(x-1\right)+x^3\left(x-1\right)+x\left(x-1\right)+1\)
Do \(x< 0\Rightarrow\hept{\begin{cases}x^5< 0\\x-1< 0\end{cases}}\Rightarrow x^5\left(x-1\right)>0\)
Tương tự ta có:\(\hept{\begin{cases}x^3\left(x-1\right)>0\\x\left(x-1\right)>0\end{cases}}\)
Khi đó \(x^5\left(x-1\right)+x^3\left(x-1\right)+x\left(x-1\right)+1>0\)
Khoảng thứ 2:\(0< x< 1\)
Khi đó \(f\left(x\right)=x^6-x^5+x^4-x^3+x^2-x+1\)
\(=x^6-x^4\left(x-1\right)-x^2\left(x-1\right)-\left(x-1\right)\)
Do \(0< x< 1\Rightarrow x-1< 0\Rightarrow\hept{\begin{cases}x^4\left(x-1\right)< 0\\x^2\left(x-1\right)< 0\\x-1< 0\end{cases}}\Rightarrow\hept{\begin{cases}-x^4\left(x-1\right)>0\\x^2\left(x-1\right)>0\\-\left(x-1\right)>0\end{cases}}\)
\(\Rightarrow x^6-x^4\left(x-1\right)-x^2\left(x-1\right)-\left(x-1\right)>0\) vì \(x^6>0\)
Khoảng thứ 3:\(1< x\)
Khi đó:\(\hept{\begin{cases}x^5\left(x-1\right)>0\\x^3\left(x-1\right)>0\\x\left(x-1\right)>0\end{cases}}\Rightarrow x^5\left(x-1\right)+x^3\left(x-1\right)+x\left(x-1\right)+1>0\)
Xét \(x=0\Rightarrow f\left(x\right)=1>0\)
Xét \(x=1\Rightarrow f\left(x\right)=1-1+1-1+1-1+1=1>0\)
\(\Rightarrowđpcm\)
Cho đa thức f(x) thoả mãn: x.f(x + 1) = (x + 2).f(x).
CTR đa thức f(x) có ít nhất 2 nghiệm là 0 và -1
Nếu x = 0
=> 0. f(1) = 2. f(0)
=> 0 = 2 . f(0)
=> f(0) = 0
=> x = 0
=> x = 0 là 1 nghiệm của đa thức f(x) ( 1 )
Nếu x = - 2
=> ( -2 ). f(- 1) = 0. f(- 2)
=> (-2 ). f(- 1 ) = 0
=> f(- 1) = 0
=> x = -1
=> x = -1 là 1 nghiệm của đa thức f(x) ( 2 )
Từ ( 1 ) và ( 2 ) => Đa thức f(x) có ít nhất 2 nghiệm là 0 và - 1
Ta có : M( x)= -x^2+8x-8
Tìm nghiệm cho đa thức M( x) hoặc c/m đa thức trên không có nghiệm...!!!###:-) :-) ;-)
Đầu tiên ta c/m đẳng thức phụ (nếu lớp 8 sẽ gọi là hằng đẳng thức và được áp dụng vào luôn còn lớp 7 phải c/m):\(a^2-b^2=\left(a-b\right)\left(a+b\right)\) (1). Thật vậy,ta có: \(a^2-b^2=a^2+ab-ab-b^2\)
\(=\left(a^2+ab\right)-\left(ab+b^2\right)=a\left(a+b\right)-b\left(a+b\right)=\left(a-b\right)\left(a+b\right)\).
Và đẳng thức: \(\left(a-b\right)^2=a^2-2ab+b^2\) (2) cái này thì đơn giản,chuyển \(\left(a-b\right)^2=\left(a-b\right)\left(a-b\right)\) rồi nhân phá tung cái ngoặc đó ra là xong.
Do đó 2 đẳng thức trên đúng.Trở lại bài toán,ta có:
\(-x^2+8x-8=0\Leftrightarrow x^2-8x+8=0\) (Chia hai vế của đẳng thức cho -1)
\(\Leftrightarrow\left(x^2-2.x.4+4^2\right)-4^2+8=0\)
Áp dụng đẳng thức số 2 suy ra:
\(\left(x-4\right)^2-8=0\Leftrightarrow\left(x-4\right)^2-\left(\sqrt{8}\right)^2=0\) (do \(\left(\sqrt{8}\right)^2=8\))
Áp dụng đẳng thức số 1 suy ra:
\(\left(x-4-\sqrt{8}\right)\left(x-4+\sqrt{8}\right)=0\Leftrightarrow\orbr{\begin{cases}x=4+\sqrt{8}\\x=4-\sqrt{8}\end{cases}}\)
Vậy ...
Đúng không ta?