tìm ba số x ,y , z biết : \(\frac{x}{3}=\frac{y}{5}=\frac{z}{7}\)và x - 2y + z = 80
Tìm ba số x,y,z biết: \(\frac{x}{5} = \frac{y}{7} = \frac{z}{9}\) và x – y + z = \(\frac{7}{3}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\begin{array}{l}\frac{x}{5} = \frac{y}{7} = \frac{z}{9} = \frac{{x - y + z}}{{5 - 7 + 9}} = \frac{{\frac{7}{3}}}{7} = \frac{7}{3}.\frac{1}{7} = \frac{1}{3}\\ \Rightarrow x = 5.\frac{1}{3} = \frac{5}{3};\\y = 7.\frac{1}{3} = \frac{7}{3};\\z = 9.\frac{1}{3} = \frac{9}{3} = 3.\end{array}\)
Vậy \(x = \frac{5}{3};y = \frac{7}{3};z = 3\)
Tìm ba số x, y, z biết :\(\frac{7}{2x+2}=\frac{3}{2y-4}=\frac{5}{z+4}\) và x + y + z = 17
Ai giúp tui với
ta có :
\(\frac{7}{2x+2}=\frac{3}{2y-4}=\frac{10}{2z+8}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{7}{2x+2}=\frac{3}{2y-4}=\frac{10}{2z+8}=\frac{7+3+10}{2x+2+2y-4+2z+8}=\frac{20}{2\left(x+y+z\right)+6}=\frac{20}{40}=\frac{1}{2}\)
\(\Rightarrow\hept{\begin{cases}2x+2=14\\2y-4=6\\2z+8=10\end{cases}}\Leftrightarrow\hept{\begin{cases}x=6\\y=5\\z=1\end{cases}}\)
ta có
\(\frac{7}{2x+2}=\frac{3}{2y-4}=\frac{5}{z+4}=\frac{7+3}{2x+2y+2-4}=\frac{10}{2x+2y+2-4}=\frac{10}{2\left(x+y\right)-4}=\frac{5}{x+y-1}\)
\(=\frac{10}{17-1+4}=\frac{10}{20}=\frac{1}{2}\)
từ đó bạn tính ra nha
Tìm cac số x;y;z biết rằng:\(\frac{x-y}{10}=\frac{y+x}{5};\frac{x+y}{7}=\frac{y-z}{8}\) và x-2y+z=36
Tìm 2 số x và y biết
a, \(\frac{x}{y}=\frac{15}{7}\) và x-2y = 16
b, \(\frac{x}{y}=\frac{8}{11};\frac{z}{y}=\frac{3}{11}\) và x + y - z = 80
c, \(\frac{x}{4}=\frac{y}{3};\frac{y}{6}=\frac{z}{11}\) và x.y.z = -528
a) \(\frac{x}{y}=\frac{15}{7}\Leftrightarrow\)\(\frac{x}{15}=\frac{y}{17}\)
Áp dụng tc của dãy tỉ số bằng nhau ta có:
\(\frac{x}{15}=\frac{y}{17}=\frac{x-2y}{15-2\cdot17}=\frac{16}{-19}\)
=> \(\begin{cases}x=-\frac{240}{19}\\y=-\frac{272}{19}\end{cases}\)
b) \(\frac{x}{y}=\frac{8}{11};\frac{z}{y}=\frac{3}{11}\)
\(\Leftrightarrow\)\(\frac{x}{8}=\frac{y}{11};\frac{z}{3}=\frac{y}{11}\)
\(\Leftrightarrow\)\(\frac{x}{8}=\frac{y}{11}=\frac{z}{3}\)
Áp dụng tc của dãy tỉ số bằng nhau ta có:
\(\frac{x}{8}=\frac{y}{11}=\frac{z}{3}=\frac{x+y-z}{8+11-3}=\frac{80}{16}=5\)
\(\Rightarrow\begin{cases}x=40\\y=55\end{cases}\)
c) \(\frac{x}{4}=\frac{y}{3}\Rightarrow\)\(\frac{x}{8}=\frac{y}{6}\)
=> \(\frac{x}{8}=\frac{y}{6}=\frac{z}{11}\)
Đặt \(\frac{x}{8}=\frac{y}{6}=\frac{z}{11}=k\Rightarrow x=8k;y=6k;z=11k\)
Có \(xyz=-528\)
\(\Leftrightarrow8k\cdot6k\cdot11k=-528\)
\(\Leftrightarrow528\cdot k^3=-528\)
\(\Leftrightarrow k^3=-1\Leftrightarrow k=-1\)
Với k=-1 thì : x=-8;y=-6;x=-11
a) Từ \(\frac{x}{y}=\frac{15}{7}\Rightarrow\frac{x}{15}=\frac{y}{7}\)
Áp dụng t/c dãy tỉ số bằng nhau,ta có:
\(\frac{x}{15}=\frac{y}{7}=\frac{x-2y}{15-14}=16\)
=> \(\begin{cases}x=240\\y=112\end{cases}\)
b) Từ \(\frac{x}{y}=\frac{8}{11}\Rightarrow\frac{x}{8}=\frac{y}{11}\)
\(\frac{z}{y}=\frac{3}{11}\Rightarrow\frac{z}{3}=\frac{y}{11}\)
=> \(\frac{x}{8}=\frac{y}{11}=\frac{z}{3}\)
Áp dụng t/c dãy tỉ số bằng nhau, ta có:
\(\frac{x}{8}=\frac{y}{11}=\frac{z}{3}=\frac{x+y-z}{8+11-3}=\frac{80}{16}=5\)
=> \(\begin{cases}x=40\\y=55\\z=15\end{cases}\)
c)Từ \(\frac{x}{4}=\frac{y}{3}\Rightarrow\frac{x}{8}=\frac{y}{6}\)
=> \(\frac{x}{8}=\frac{y}{6}=\frac{z}{11}\)
Đặt \(\frac{x}{8}=\frac{y}{6}=\frac{z}{11}\) = k
=> \(\begin{cases}x=8k\\y=6k\\z=11k\end{cases}\)
=> x.y.z = -528 => 8k.6k.11k = -528 => 528k3 = -528
=> k3 = -1 => k = -1
=> \(\begin{cases}x=-8\\y=-6\\z=-11\end{cases}\)
À ! sorry mấy bn nha đề bài là tìm x,y, z nhưng mik ghi nhầm đề bài
1/ Tìm x, y biết:
a/ \(\frac{x}{y}=\frac{7}{3}\)và 5x - 2y = 87
b/ \(\frac{x}{19}=\frac{y}{21}và2x-y=34\)
2/ Tìm các số a, b, c biết rằng: 2a = 3b; 5b = 7c và 3a+5c - 7b = 30
3/ Tìm các số x; y; z biết rằng:
a/ \(3x=2y;7y=5z\) và x - y + z =32
b/ \(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}\)và x + y + z =49
c/ \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\) và 2x +3y - z =50
4/ Tìm các số x; y; z biết rằng:
a/ \(\frac{x^3}{8}=\frac{y^3}{64}=\frac{z^3}{216}\) và \(x^2+y^2+z^2=14\)
b/ \(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{1}{x+y+z}\)
c/ \(\frac{1+2y}{18}=\frac{1+4y}{24}=\frac{1+6y}{6x}\)
d/ \(\frac{2x+1}{5}=\frac{3y-2}{7}=\frac{2x+3y-1}{6x}\)
1.
a)Ta có: 3.x=y.7
3x chia hết cho 7 mà 3 và 7 là số nguyên tố cùng nhau
suy ra: x chia hết cho 2 hay x=2k (k thuộc tập hợp số nguyên)
7y chia hết cho 3 mà 7 và 3 là số nguyên tố cùng nhau
suy ra: y chia hết cho 3 hay y=7k (k thuộc tập hợp số nguyên)
(y khác 0 nên k khác 0)
vậy: x=2.k
y=5.k
(k thuộc tập hợp Z và k khác 0)
Tìm x,y,z biết :
a, \(\frac{x}{3}=\frac{y-5}{7}=\frac{z+2}{3}\) và x+2y=52
b, \(\frac{2x-y}{5}=\frac{3y-2z}{15}\) và x+z=2y
Mik giải đc bài dưới thui ạ
Từ x + z = 2y ta có:
x – 2y + z = 0 hay 2x – 4y + 2z = 0 hay 2x – y – 3y + 2z = 0 hay 2x – y = 3y – 2z
Vậy nếu: 2x−y5=3y−2z152x−y5=3y−2z15 thì: 2x – y = 3y – 2z = 0 (vì 5 ≠≠ 15.)
Từ 2x – y = 0 suy ra: x = 12y12y
Từ 3y – 2z = 0 và x + z = 2y. ⇒⇒ x + z + y – 2z = 0 hay 12y12y+ y – z = 0
hay 32y32y - z = 0 hay y = 23z23z. suy ra: x = 13z13z.
Vậy các giá trị x, y, z cần tìm là: {x = 13z13z; y = 23z23z ; với z ∈∈ R }
hoặc {x = 12y12y; y ∈∈ R; z = 32y32y} hoặc {x ∈∈ R; y = 2x; z = 3x}
1. Tìm các số x, y, z biết rằng:\(\frac{x}{5}=\frac{y}{6},\frac{y}{8}=\frac{z}{7}\) và x + y - z = 69
2. Tìm các số x, y, z biết rằng: \(\frac{x-1}{2}=\frac{y+3}{4}=\frac{z-5}{6}\) và 5z - 3x - 4y = 50
3. Tìm các số x, y, z, t biết rằng:
x: y: z : t = 15: 7 :3 :1 và x - y + z - t = 10
1, ta co \(\frac{x}{5}=\frac{y}{6}=\frac{x}{20}=\frac{y}{24}\)
\(\frac{y}{8}=\frac{z}{7}=\frac{y}{24}=\frac{z}{21}\)
=>\(\frac{x}{20}=\frac{y}{24}=\frac{z}{21}=\frac{x+y-z}{20+24-21}=\frac{69}{23}=3\)
=>\(x=3\cdot20=60\)
\(y=3\cdot24=72\)
\(z=3\cdot21=63\)
3. ta co \(\frac{x}{15}=\frac{y}{7}=\frac{z}{3}=\frac{t}{1}=\frac{x+y-z+t}{15-7+3-1}=\frac{10}{10}=1\)
=> \(x=1\cdot15=15\)
\(y=1\cdot7=7\)
\(z=1\cdot3=3\)
\(t=1\cdot1=1\)
Áp dụng tính chất dãy tỉ số bằng nhau
\(\frac{x}{5}=\frac{y}{7}=\frac{z}{9}=\frac{x-y+z}{5-7+9}=\frac{315}{7}=45\)
suy ra: x/5 = 45 => x = 225
y/7 = 45 => y = 315
z/9 = 45 => z = 405
Tìm x, y ,z biết :\(\frac{x-y}{10}=\frac{y+z}{5};\frac{x+y}{7}=\frac{y-z}{-8}\) và x - 2y + z =75
Tìm các số x, y, z biết: \(\frac{x}{3}\)=\(\frac{y}{5}\)= \(\frac{z}{7}\) và x – 3y + z = –80.
Áp dụng tính chất dãy tỉ số bằng nhau , ta có :
\(\frac{x}{3}=\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{x}{3}=\frac{3y}{15}=\frac{z}{7}=\frac{x-3y+z}{3-15+7}=\frac{-80}{-5}=16\)
Khi đó : \(\frac{x}{3}=16\Rightarrow x=48\)
\(\frac{y}{5}=16\Rightarrow y=80\)
\(\frac{z}{7}=16\Rightarrow z=112\)
Vậy \(x=48;y=80;z=112\)
Ta có :
\(\frac{x}{3}=\frac{y}{5}=\frac{x}{7}\Rightarrow\frac{x}{3}=\frac{3y}{15}=\frac{z}{7}\)
Áp dụng t/c của dãy tỉ số bằng nhau, ta có :
\(\frac{x}{3}=\frac{3y}{15}=\frac{z}{7}=\frac{x-3y+z}{3-15+7}=\frac{x-3y+z}{-5}\)
Mà \(x-3y+z=-80\Rightarrow\frac{x}{3}=\frac{y}{5}=\frac{z}{7}=\frac{-80}{-5}=16\)
+) \(\frac{x}{3}=16\Rightarrow x=48\)
+) \(\frac{y}{5}=16\Rightarrow y=80\)
+) \(\frac{z}{7}=16\Rightarrow z=112\)
Vậy x = 48 ; y = 80 ; z = 112
\(\frac{x}{3}=\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{x}{3}=\frac{3y}{15}=\frac{z}{7}\)và x - 3y + z = -80
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{3}=\frac{3y}{15}=\frac{z}{7}=\frac{x-3y+z}{3-15+7}=\frac{-80}{-5}=16\)
\(\frac{x}{3}=16\Rightarrow x=48\)
\(\frac{y}{5}=16\Rightarrow y=80\)
\(\frac{z}{7}=16\Rightarrow z=112\)