thực hiện phép tinh:
\(\left(x^2y^2-\frac{1}{2}xy+2y\right).\left(x-2y\right)\)
Thực hiện phép tính sau
a)\(\left(x^2y^2-\frac{1}{2}xy+2y\right)\left(x-2y\right)\)
b)\(\left(x^2-xy+y^2\right)\left(x+y\right)\)
a) biết chết liền
b) \(\left(x^2-xy+y^2\right)\left(x+y\right)=x^3+y^3\)
Thực hiện phép tính
\(\left(x^2y-\frac{1}{2}xy+y^2\right).\left(x-\frac{1}{2}y\right)-x^2y\left(x-\frac{1}{2}\right)\)
thực hiện phép tính:
\(\left(x^2y^2-\frac{1}{2}xy+2y\right).\left(x-2y\right)\)
Thực hiện phép tính
\(\frac{3xy^2+x^2y}{xy\left(x-y\right)}\)- \(\frac{3x^2y+xy^2}{xy\left(x-y\right)}\)
\(ĐKXĐ:x\ne y,x\ne0,y\ne0\)
Ta có : \(\frac{3xy^2+x^2y}{xy\left(x-y\right)}-\frac{3x^2y+xy^2}{xy.\left(x-y\right)}\)
\(=\frac{3xy^2+x^2y-3x^2y-xy^2}{xy.\left(x-y\right)}\)
\(=\frac{-3xy.\left(x-y\right)+xy.\left(x-y\right)}{xy.\left(x-y\right)}=\frac{-2xy.\left(x-y\right)}{xy.\left(x-y\right)}=-2\)
\(\frac{3xy^2+x^2y}{xy\left(x-y\right)}-\frac{3x^2y+xy^2}{xy.\left(x-y\right)}\)
\(=\frac{3xy^2+x^2y}{xy\left(x-y\right)}+\frac{-\left(3x^2y+xy^2\right)}{xy.\left(x-y\right)}\)
\(=\frac{3xy^2+x^2y-3x^2y-xy^2}{xy.\left(x-y\right)}\)
\(=\frac{\left(3xy^2-3x^2y\right)+\left(x^2y-xy^2\right)}{xy.\left(x-y\right)}\)
\(=\frac{3xy.\left(y-x\right)+xy.\left(x-y\right)}{xy.\left(x-y\right)}\)
\(=\frac{-3xy.\left(x-y\right)+xy.\left(x-y\right)}{xy.\left(x-y\right)}\)
\(=\frac{\left(x-y\right).\left(-3xy+xy\right)}{xy.\left(x-y\right)}\)
\(=\frac{-3xy+xy}{xy}\)
\(=\frac{-2xy}{xy}\)
\(=-2.\)
\(\frac{3xy^2+x^2y}{xy\left(x-y\right)}-\frac{3x^2y+xy^2}{xy\left(x-y\right)}\)( ĐKXĐ : \(x\ne y;x,y\ne0\))
= \(\frac{3xy^2+x^2y-3x^2y-xy^2}{xy\left(x-y\right)}\)
\(=\frac{xy^2\left(3-1\right)+x^2y\left(1-3\right)}{xy\left(x-y\right)}\)
\(=\frac{xy^2\left(3-1\right)-x^2y\left(3-1\right)}{xy\left(x-y\right)}\)
\(=\frac{2\left(xy^2-x^2y\right)}{xy\left(x-y\right)}\)
\(=\frac{2xy\left(y-x\right)}{-xy\left(y-x\right)}\)
\(=-2\)
thực hiện phép tính:
a/ \(\left(x^2y^2-\frac{1}{2}xy+2y\right)\left(x-2y\right)\)
b/ \(\left(y-1\right)\left(y^2+y+1\right)+\left(\frac{1}{3}x^3y-y\right)\left(2x+y^2\right)\)
a/ (\(x^3y^2\)-\(\frac{1}{2}x^3y\) + \(2xy\) - \(2x^2y^3\) + \(xy^2\) - \(4y^2\) =
Thực hiện phép tính
\(\left[5\left(2y-x\right)^4+\left(x-2y\right)^2+2y-x\right]:\left(x-2y\right)\)
\(=\dfrac{5\left(x-2y\right)^4+\left(x-2y\right)^2-\left(x-2y\right)}{x-2y}\)
=5(x-2y)^3+(x-2y)-1
\(\left[5\left(2y-x\right)^4+\left(x-2y\right)^2+2y-x\right]:\left(x-2y\right)\)
Thực hiện phép tính
\(\dfrac{5\cdot\left(2y-x\right)^4+\left(2y-x\right)^2+\left(2y-x\right)}{x-2y}=\dfrac{5\cdot\left(x-2y\right)^4+\left(x-2y\right)^2-\left(x-2y\right)}{x-2y}=5\cdot\left(x-2y\right)^3+\left(x-2y\right)-1.\)
Khi hàm số \(\left(ax-by\right)^n\) với n là số chẵn thì ax và by có thể đổi chỗ cho nhau nhưng không thay đổi kết quả
thực hiện phép tính:
a,\(\left(9x^2y^3-15x^4y^4\right):3x^2y-\left(2-3x^2y\right)y^2\)
b,\(\left(6x^2-xy\right):x+\left(2x^3y+3xy^2\right):xy-\left(2x-1\right)x\)
c,\(\left(x^2-xy\right):x-+\left(6x^2y^5-9x^3y^4+15x^4y^2\right):\dfrac{3}{2}x^2y^3\)
Thực hiện phép tính:
a) \(\dfrac{2}{5}xy\left(x^2y-5x+10y\right)\)
b) \(\left(x^2-1\right)\left(x^2+2x+y\right)\)
c) \(\left(x+3y\right)^2\)
d) \(\left(4x-y\right)^3\)
e) \(\left(x^2-2y\right)\left(x^2+2y\right)\)
g) \(18x^4y^2z:10x^4y\)
h) \(\left(x^3y^3+\dfrac{1}{2}x^2y^3-x^3y^2\right):\dfrac{1}{3}x^2y^2\)
i) \(\left(6x^3-7x^2-x+2\right):\left(2x+1\right)\)
k) \(\dfrac{5x-1}{3x^2y}+\dfrac{x+1}{3x^2y}\)
l) \(\dfrac{3x+1}{x^2-3x+1}+\dfrac{x^2-6x}{x^2-3x+1}\)
m) \(\dfrac{2x+3}{10x-4}+\dfrac{5-3x}{4-10x}\)
n) \(\dfrac{x}{x^2+2x+1}+\dfrac{3}{5x^2-5}\)
o) \(\dfrac{x^2+2}{x^3-1}+\dfrac{2}{x^2+x+1}+\dfrac{1}{1-x}\)
p) \(\dfrac{4x+2}{15x^3y}\dfrac{5y-3}{9x^2y}+\dfrac{x+1}{5xy^3}\)
q) \(\dfrac{2x-7}{10x-4}-\dfrac{3x+5}{4-10x}\)
r) \(\dfrac{3}{2x+6}-\dfrac{x-6}{2x^2+6x}\)
x) \(\dfrac{4y^2}{11x^4}.\left(-\dfrac{3x^2}{8y}\right)\)
y) \(\dfrac{x^2-4}{3x+12}.\dfrac{x+4}{2x-4}\)
z) \(\left(x^2-25\right):\dfrac{2x+10}{3x-7}\)
t) \(\left(\dfrac{2x+1}{2x-1}-\dfrac{2x-1}{2x+1}\right):\dfrac{4x}{10x-5}\)
w) \(\left(\dfrac{1}{x^2+x}-\dfrac{2-x}{x+1}\right):\left(\dfrac{1}{x}+x-2\right)\)
c: \(=x^2+6xy+9y^2\)
e: \(=x^4-4y^2\)