Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
8/11-22-Đặng Bảo Ngọc
Xem chi tiết
Nguyễn Lê Phước Thịnh
16 tháng 12 2021 lúc 10:28

Bài 1: 

b: \(\Leftrightarrow x-2=0\)

hay x=2

illumina
Xem chi tiết
Nguyễn Lê Phước Thịnh
23 tháng 2 2023 lúc 22:15

Sửa đề: 8x-1

=>2(8x^2-x)(8x^2-x+2)-126=0

=>2[(8x^2-x)^2+2(8x^2-x)]-126=0

=>(8x^2-x)^2+2(8x^2-x)-63=0

=>(8x^2-x+9)(8x^2-x-7)=0

=>8x^2-x-7=0

=>x=1 hoặc x=-7/8

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
2 tháng 6 2017 lúc 4:10

Đặt t = 2 x  (t > 0), ta có phương trình:

− t 3  + 2 t 2  + t – 2 = 0

⇔ (t − 1)(t + 1)(2 − t) = 0

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Do đó: Giải sách bài tập Toán 12 | Giải sbt Toán 12

Phương Nhi
Xem chi tiết

x- 8x - 9  ≥ 0

<=> (x+1)(x-9)\(\ge\)0

<=> \(\hept{\begin{cases}x+1\ge0\\x-9\ge0\end{cases}}\)hoặc \(\hept{\begin{cases}x+1\le0\\x-9\le0\end{cases}}\)

<=> \(\orbr{\begin{cases}x\ge9\\x\le-1\end{cases}}\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
10 tháng 10 2019 lúc 4:31

a) Cách 1: Khai triển HĐT rút gọn được 3 x 2  + 6x + 7 = 0

Vì (3( x 2  + 2x + 1) + 4 < 0 với mọi x nên giải được  x ∈ ∅

Cách 2. Chuyển vế đưa về ( x   +   3 ) 3 =  ( x   - 1 ) 3  Û x + 3 = x - 1

Từ đó tìm được x ∈ ∅

b) Đặt  x 2  = t với t ≥ 0 ta được  t 2  + t - 2 = 0

Giải ra ta được t = 1 (TM) hoặc t = -2 (KTM)

Từ đó tìm được x = ± 1

c) Biến đổi được 

d) Biến đổi về dạng x(x - 2) (x - 4) = 0. Tìm được x{0; 2; 4}

Đặng Quỳnh Ngân
Xem chi tiết
Tinh Linh
29 tháng 6 2016 lúc 21:15

\(\Leftrightarrow3x^3-2x^2-6x^2+4x-6x+4=0\)

\(\Leftrightarrow x^2\left(3x-2\right)-2x\left(3x-2\right)-2\left(3x-2\right)=0\)

\(\Leftrightarrow\left(3x-2\right)\left(x^2-2x-2\right)=0\)

\(\Leftrightarrow x=\frac{2}{3}\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
14 tháng 8 2019 lúc 6:09

phạm thanh tú
Xem chi tiết
Minh Nguyen
12 tháng 2 2020 lúc 21:42

Đề bài sai ! Sửa ạ :

a) \(\left(x^2+x+1\right)\left(6-2x\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x^2+x+1=0\\6-2x=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}\left(x+\frac{1}{2}\right)^2+\frac{3}{4}=0\left(ktm\right)\\x=3\left(tm\right)\end{cases}}\)

Vậy tập nghiệm của phương trình là \(S=\left\{3\right\}\)

b) \(\left(8x-4\right)\left(x^2+2x+2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}8x-4=0\\x^2+2x+2=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{2}\left(tm\right)\\\left(x+1\right)^2+1=0\left(ktm\right)\end{cases}}\)

Vậy tập nghiệm của phương trình là \(S=\left\{\frac{1}{2}\right\}\)

Khách vãng lai đã xóa
Inequalities
13 tháng 2 2020 lúc 9:26

\(\left(x^2+x+1\right)\left(6-2x\right)=0\)

Mà \(x^2+x+1=\left(x+\frac{1}{2}\right)^2+\frac{1}{4}>0\)

\(\Rightarrow6-2x=0\Rightarrow x=3\)

Khách vãng lai đã xóa
Châu Minh
Xem chi tiết