Những câu hỏi liên quan
Trần Lâm Thiên Hương
Xem chi tiết
Pain Thiên Đạo
25 tháng 5 2018 lúc 21:43

\(x^4y+x^2y-x^2y=x^2y\left(x^2+1\right)-x^2y.\)

\(\hept{\begin{cases}\frac{x^2y\left(x^2+1\right)-x^2y}{\left(x^2+1\right)}=x^2y-\frac{x^2y}{\left(x^2+1\right)}\\\frac{y^2z\left(y^2+1\right)-y^2z}{\left(y^2+1\right)}=y^2z-\frac{y^2z}{\left(y^2+1\right)}\\\frac{z^2x\left(z^2+1\right)-z^2x}{\left(z^2+1\right)}=z^2x-\frac{z^2x}{\left(z^2+1\right)}\end{cases}}Vt\ge x^2y+y^2z+z^2x-\left(\frac{x^2y}{x^2+1}+\frac{y^2z}{y^2+1}+\frac{z^2x}{z^2+1}\right)\)

\(\hept{\begin{cases}x^2+1\ge2x\\y^2+1\ge2y\\z^2+1\ge2z\end{cases}\Leftrightarrow\hept{\begin{cases}-\frac{x^2y}{x^2+1}\ge\frac{x^2y}{2x}=\frac{xy}{2}\\\frac{y^2z}{2y}=\frac{yz}{2}\\\frac{z^2x}{2z}=\frac{xz}{2}\end{cases}\Leftrightarrow}VT\ge x^2y+y^2z+z^2x-\left(\frac{xy+yz+zx}{2}\right)}\)

\(x^2y+y^2z+z^2x\ge3\sqrt[3]{x^3y^3z^3}=3\)

\(VT\ge3-\frac{\left(xy+yz+zx\right)}{2}\)

t chỉ làm dc đến đây thôi :))

Trần Lâm Thiên Hương
27 tháng 5 2018 lúc 11:02

Từ \(VT\ge x^2y+y^2z+z^2x-\left(\frac{xy+yz+zx}{2}\right)\)ta có:

\(x^2y+x^2y+y^2z=x^2y+x^2y+\frac{y}{x}\ge3xy\)(áp dụng BĐT Cauchy)

Tương tự : \(y^2z+y^2z+z^2x\ge3yz\);   \(z^2x+z^2x+x^2y\ge3zx\)

Cộng vế theo vế suy ra : \(3\left(x^2y+y^2z+z^2x\right)\ge3\left(xy+yz+zx\right)\)

\(\Leftrightarrow x^2y+y^2z+z^2x\ge xy+yz+zx\)

\(\Leftrightarrow VT\ge\frac{xy+yz+zx}{2}\ge\frac{3\sqrt[3]{x^2y^2z^2}}{2}=\frac{3}{2}\)

Dấu '=' xảy ra khi x = y = z = 1

Tran Le Khanh Linh
21 tháng 4 2020 lúc 19:43

Do xyz=1. nên bđt cần chứng minh tường đương với

\(\frac{x^4}{x^3z+xz}+\frac{y^4}{y^3x+xy}+\frac{z^4}{z^3y+zy}\ge\frac{3}{2}\)

Theo BĐT Bunhiacopsky ta có:

\(\frac{x^4}{x^3z+xz}+\frac{y^4}{y^3x+xy}+\frac{z^4}{z^3y+zy}\ge\frac{\left(x^2+y^2+z^2\right)^2}{x^3z+xz+y^3x+xy+z^3y+zy}\)

Do vậy ta cần cm

\(\frac{\left(x^2+y^2+z^2\right)^2}{x^3z+xz+y^3x+xy+z^3y+zy}\ge\frac{3}{2}\)

\(\Leftrightarrow2\left(x^4+y^4+z^4\right)+4\left(x^2y^2+y^2z^2+z^2x^2\right)\ge3\left(x^3z+y^3x+z^3y\right)+3\left(xy+yz+xz\right)\)

BĐT trên là tổng của 3 BĐT sau:

\(1,x^2y^2+y^2z^2+z^2x^2\ge xy+yz+xz\)

\(2,x^4+y^4+z^4\ge x^3z+y^3x+z^3y\)

\(3,x^4+y^4+z^4+x^2y^2+y^2z^2+z^2x^2\ge2\left(x^3z+y^3x+z^3y\right)\)

ta có bđt trên tương đương với

\(x^2\left(x-z\right)^2+y^2\left(y-x\right)^2+z^2\left(z-y\right)^2\ge0\)

Nhân 3 ở bđt đầu tiên rồi cộng vế theo vế các bđt ở dưới ta có đpcm

dấu "=" xảy ra khi x=y=z=1

Khách vãng lai đã xóa
Bestzata
Xem chi tiết
Nguyễn Linh Chi
27 tháng 10 2020 lúc 8:40

Nếu x; y; z là các số nguyên dương mà x y z = 1 => x = y = z = 1

=> bất đẳng thức luôn xảy ra dấu bằng

Sửa đề 1 chút cho z; y; x là các số dương

Ta có: \(\frac{x^2}{y+1}+\frac{y+1}{4}\ge2\sqrt{\frac{x^2}{y+1}.\frac{y+1}{4}}=x\)

=> \(\frac{x^2}{y+1}\ge x-\frac{y+1}{4}\)

Tương tự: 

\(\frac{x^2}{y+1}+\frac{y^2}{z+1}+\frac{z^2}{z+1}\ge x+y+z-\frac{y+1}{4}-\frac{z+1}{4}-\frac{x+1}{4}\)

\(=\frac{3}{4}\left(x+y+z\right)-\frac{3}{4}\ge\frac{3}{4}.3\sqrt[3]{xyz}-\frac{3}{4}=\frac{3}{2}\)

Dấu "=" xảy ra <=> x = y = z = 1

Khách vãng lai đã xóa
Khôi 2k9
Xem chi tiết
Kiệt Nguyễn
9 tháng 12 2020 lúc 20:21

Ta có: \(x+y+z=xyz\Rightarrow x=\frac{x+y+z}{yz}\Rightarrow x^2=\frac{x^2+xy+xz}{yz}\Rightarrow x^2+1=\frac{\left(x+y\right)\left(x+z\right)}{yz}\)\(\Rightarrow\sqrt{x^2+1}=\sqrt{\frac{\left(x+y\right)\left(x+z\right)}{yz}}\le\frac{\frac{x+y}{y}+\frac{x+z}{z}}{2}=1+\frac{x}{2}\left(\frac{1}{y}+\frac{1}{z}\right)\)\(\Rightarrow\frac{1+\sqrt{1+x^2}}{x}\le\frac{2+\frac{x}{2}\left(\frac{1}{y}+\frac{1}{z}\right)}{x}=\frac{2}{x}+\frac{1}{2}\left(\frac{1}{y}+\frac{1}{z}\right)\)

Tương tự: \(\frac{1+\sqrt{1+y^2}}{y}\le\frac{2}{y}+\frac{1}{2}\left(\frac{1}{z}+\frac{1}{x}\right)\)\(\frac{1+\sqrt{1+z^2}}{z}\le\frac{2}{z}+\frac{1}{2}\left(\frac{1}{x}+\frac{1}{y}\right)\)

Cộng theo vế ba bất đẳng thức trên, ta được: \(\frac{1+\sqrt{1+x^2}}{x}+\frac{1+\sqrt{1+y^2}}{y}+\frac{1+\sqrt{1+z^2}}{z}\le3\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=3.\frac{xy+yz+zx}{xyz}\)\(\le3.\frac{\frac{\left(x+y+z\right)^2}{3}}{xyz}=\frac{\left(x+y+z\right)^2}{xyz}=\frac{\left(xyz\right)^2}{xyz}=xyz\)

Đẳng thức xảy ra khi \(x=y=z=\sqrt{3}\)

Khách vãng lai đã xóa
fghj
Xem chi tiết
Giao Khánh Linh
Xem chi tiết
alibaba nguyễn
6 tháng 12 2019 lúc 9:30

\(\frac{1}{x^3\left(y+z\right)}+\frac{1}{y^3\left(z+x\right)}+\frac{1}{z^3\left(x+y\right)}\)

\(=\frac{y^2z^2}{x\left(y+z\right)}+\frac{z^2x^2}{y\left(z+x\right)}+\frac{x^2y^2}{z\left(x+y\right)}\)

\(\ge\frac{\left(xy+yz+zx\right)^2}{2\left(xy+yz+zx\right)}=\frac{xy+yz+zx}{2}\ge\frac{3\sqrt[3]{x^2y^2z^2}}{2}=\frac{3}{2}\)

Khách vãng lai đã xóa
like game
Xem chi tiết
Blue Moon
Xem chi tiết
zZz Cool Kid_new zZz
24 tháng 2 2019 lúc 10:04

\(\text{Ta có:}\)

\(\frac{1}{y}+\frac{1}{z}+\frac{1}{x}\left(x,y,z>0\right)\ge\frac{3}{\sqrt[3]{xyz}}\ge\frac{3}{\frac{x+y+z}{3}}=\frac{9}{x+y+z}\)

\(\frac{y+z+5}{1+x}+\frac{z+x+5}{1+y}+\frac{x+y+5}{1+z}\)

\(=\frac{x+y+z+6}{1+x}+\frac{x+y+z+6}{1+y}+\frac{x+y+z+6}{1+z}-3\)

\(=\frac{24}{1+x}+\frac{24}{1+y}+\frac{24}{1+z}-3\ge\frac{51}{7}\Leftrightarrow\frac{24}{1+x}+\frac{24}{1+y}+\frac{24}{1+z}\ge\frac{72}{7}\)

\(24\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\ge24\left(\frac{9}{x+1+y+1+z+1}\right)\)

\(=24\left(\frac{9}{21}\right)=\frac{24.9}{21}=\frac{8.9}{7}=\frac{72}{7}\)

Bài toán đã được chứng minh

zZz Cool Kid_new zZz
24 tháng 2 2019 lúc 10:08

\(\text{Thêm dấu "=" xảy ra khi: x=y=z=6 nha! =((}\)

Blue Moon
24 tháng 2 2019 lúc 12:55

Thanks zZz Phan Gia Huy ZZz nha!!!😊😊😊

N.T.M.D
Xem chi tiết
Nguyễn Việt Lâm
6 tháng 5 2021 lúc 17:14

\(VT=\dfrac{1}{z}\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\ge\dfrac{1}{z}\left(\dfrac{4}{x+y}\right)=\dfrac{4}{z\left(x+y\right)}\ge\dfrac{16}{\left(z+x+y\right)^2}\ge16\) (đpcm)

Dấu "=" xảy ra khi \(\left(x;y;z\right)=\left(\dfrac{1}{4};\dfrac{1}{4};\dfrac{1}{2}\right)\)

Minh Triều
Xem chi tiết
Con Chim 7 Màu
23 tháng 2 2019 lúc 7:58

\(taco:\)

\(\frac{1}{x\left(x+1\right)}+\frac{x}{2}+\frac{x+1}{4}\ge3\sqrt[3]{\frac{1}{x\left(x+1\right)}.\frac{x}{2}.\frac{x+1}{4}}=\frac{3}{2}\)

\(\frac{1}{y\left(y+1\right)}+\frac{y}{2}+\frac{y+1}{2}\ge3\sqrt[3]{\frac{1}{y\left(y+1\right)}.\frac{y}{2}.\frac{y+1}{4}}=\frac{3}{2}\)

\(\frac{1}{z\left(z+1\right)}+\frac{z}{2}+\frac{z+1}{4}\ge3\sqrt[3]{\frac{1}{z\left(z+1\right)}.\frac{z}{2}.\frac{z+1}{4}}=\frac{3}{2}\)

\(\frac{1}{x\left(x+1\right)}+\frac{1}{y\left(y+1\right)}+\frac{1}{z\left(z+1\right)}+\frac{x+y+z}{2}+\frac{x+y+z+3}{4}\ge\frac{3}{2}+\frac{3}{2}+\frac{3}{2}\)

\(\Leftrightarrow\frac{1}{x^2+x}+\frac{1}{y^2+y}+\frac{1}{z^2+z}+\frac{3}{2}+\frac{3}{2}\ge\frac{9}{2}\)

\(\Leftrightarrow\frac{1}{x^2+x}+\frac{1}{y^2+y}+\frac{1}{z^2+z}\ge\frac{3}{2}\left(dpcm\right)\)

^^

tth_new
23 tháng 2 2019 lúc 8:03

Mình giải lại bài này cho đầy đủ hơn nhé: (nãy chỉ là hướng dẫn thôi)

Ta sẽ c/m: \(\frac{1}{x^2+x}\ge-\frac{3}{4}x+\frac{5}{4}\) (1).Thật vậy,xét hiệu hai vế,ta có:

\(VT-VP=\frac{\left(3x+4\right)\left(x-1\right)^2}{4\left(x^2+x\right)}\ge0\)

Suy ra \(VT\ge VP\).Vậy (1) đúng.

Thiết lập hai BĐT còn lại tương tự và cộng theo vế,ta có:

\(VT\ge-\frac{3}{4}\left(x+y+z\right)+\frac{5}{4}.3=\frac{3}{2}^{\left(đpcm\right)}\)

Nguyễn Anh Dũng
12 tháng 4 2016 lúc 16:21

fgffgfg