Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Tiểu Hổ
Xem chi tiết
Nguyễn Lê Phước Thịnh
12 tháng 8 2021 lúc 0:48

Để B nguyên thì \(3\sqrt{x}⋮2\sqrt{x}+1\)

\(\Leftrightarrow2\sqrt{x}+1\in\left\{1;-1;3;-3\right\}\)

\(\Leftrightarrow2\sqrt{x}+1\in\left\{1;3\right\}\)

\(\Leftrightarrow2\sqrt{x}\in\left\{0;2\right\}\)

\(\Leftrightarrow\sqrt{x}\in\left\{0;1\right\}\)

hay \(x\in\left\{0;1\right\}\)

đỗ thị hồng nhung
Xem chi tiết
Vo Thi Ha Tram
Xem chi tiết
Nguyễn Lê Phước Thịnh
19 tháng 12 2021 lúc 19:33

a: \(M=\dfrac{x+4\sqrt{x}-4}{\sqrt{x}\left(\sqrt{x}-2\right)}\)

Tran Hieupro
Xem chi tiết
Tran Hieupro
12 tháng 7 2016 lúc 17:47

A>0 chứ ko phải x>0

Đăng
Xem chi tiết
Tiếng anh123456
Xem chi tiết
HT.Phong (9A5)
11 tháng 8 2023 lúc 10:57

a) \(P=\left(\dfrac{1}{x-\sqrt{x}}+\dfrac{\sqrt{x}}{x-1}\right):\left(\dfrac{x\sqrt{x}-1}{x\sqrt{x}-\sqrt{x}}\right)\)

\(P=\left(\dfrac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}+\dfrac{\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right):\left(\dfrac{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right)\)

\(P=\left(\dfrac{\sqrt{x}+1+x}{\sqrt{x}\left(\sqrt{x}+1\right)\left(\sqrt{x}+1\right)}\right):\dfrac{x+\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}+1\right)}\)

\(P=\dfrac{x+\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{x+\sqrt{x}+1}\)

\(P=\dfrac{1}{\sqrt{x}-1}\)

b) P = \(\dfrac{1}{2}\) khi:

\(\dfrac{1}{\sqrt{x}-1}=\dfrac{1}{2}\)

\(\Rightarrow2=\sqrt{x}-1\)

\(\Rightarrow\sqrt{x}=3\)

\(\Rightarrow x=9\left(tm\right)\)

Nguyễn Lê Phước Thịnh
11 tháng 8 2023 lúc 10:51

a: \(P=\left(\dfrac{1}{x-\sqrt{x}}+\dfrac{\sqrt{x}}{x-1}\right):\dfrac{x\sqrt{x}-1}{x\sqrt{x}-\sqrt{x}}\)

\(=\dfrac{\sqrt{x}+1+x}{\sqrt{x}\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\cdot\dfrac{\sqrt{x}\left(x-1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)

\(=\dfrac{1}{\sqrt{x}-1}\)

b: P=1/2

=>căn x-1=2

=>căn x=3

=>x=9

Thảo Nguyên 2k11
11 tháng 8 2023 lúc 11:35

a) Để rút gọn biểu thức P, ta thực hiện các bước sau: P = [(1/(x-√x)) + (√x/(x-1))] : [(x√x-1)/(x√x-√x)] Đầu tiên, ta nhân tử và mẫu của phân số bên trái với (x-√x) để loại bỏ mẫu phân số trong dấu ngoặc: P = [(1/(x-√x)) * (x-√x) + (√x/(x-1)) * (x-√x)] : [(x√x-1)/(x√x-√x)] P = [1 + (√x * (x-√x))/(x-1)] : [(x√x-1)/(x√x-√x)] Tiếp theo, ta nhân tử và mẫu của phân số bên phải với (x√x+√x) để loại bỏ mẫu phân số trong dấu ngoặc: P = [1 + (√x * (x-√x))/(x-1)] * [(x√x+√x)/(x√x+√x)] : [(x√x-1)/(x√x-√x)] P = [(x√x+√x + √x * (x-√x))/(x-1)] * [(x√x+√x)/(x√x-1)] P = [(x√x+√x + √x * (x-√x)) * (x√x+√x)] / [(x-1) * (x√x-1)] P = [(x√x+√x + √x * (x-√x)) * (x√x+√x)] / [(x-1) * (x√x-1)] P = [(x^2 + 2√x + x - x) * (x√x+√x)] / [(x-1) * (x√x-1)] P = [(x^2 + 2√x) * (x√x+√x)] / [(x-1) * (x√x-1)] P = [(x^2 + 2√x) * (x√x+√x)] / [(x-1) * (x√x-1)] P = [(x^3 + 3x√x + 2x)] / [(x-1) * (x√x-1)] P = (x^3 + 3x√x + 2x) / (x^2√x - x√x - x + 1) Vậy biểu thức P sau khi rút gọn là (x^3 + 3x√x + 2x) / (x^2√x - x√x - x + 1). b) Để tìm x để P = 1/2, ta giải phương trình: (x^3 + 3x√x + 2x) / (x^2√x - x√x - x + 1) = 1/2 Nhân cả hai vế của phương trình với (x^2√x - x√x - x + 1) để loại bỏ mẫu phân số: 2(x^3 + 3x√x + 2x) = x^2√x - x√x - x + 1 2x^3 + 6x√x + 4x = x^2√x - x√x - x + 1 2x^3 + 6x√x + 4x - x^2√x + x√x + x - 1 = 0 2x^3 + 5x√x + 5x - x^2√x - 1 = 0 Đây là phương trình không thể giải bằng phép tính đơn giản. Ta có thể sử dụng phương pháp số học hoặc phương pháp đồ thị để tìm nghiệm của phương trình này.

meomeo
Xem chi tiết
An Thy
11 tháng 7 2021 lúc 16:05

\(M=\dfrac{1}{\sqrt{x}+3}+\dfrac{\sqrt{x}+9}{x-9}=\dfrac{1}{\sqrt{x}+3}+\dfrac{\sqrt{x}+9}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)

\(=\dfrac{\sqrt{x}-3+\sqrt{x}+9}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}=\dfrac{2\sqrt{x}+6}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}=\dfrac{2\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)

\(=\dfrac{2}{\sqrt{x}-3}\)

Để M là số tự nhiên \(\Rightarrow\left\{{}\begin{matrix}2⋮\sqrt{x}-3\\\sqrt{x}-3>0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\sqrt{x}-3\in\left\{2;1;-1;-2\right\}\\x>9\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x\in\left\{25;16;4;1\right\}\\x>9\end{matrix}\right.\Rightarrow x\in\left\{25;16\right\}\)

Thế vào M,ta đường \(\left\{{}\begin{matrix}x=25\Rightarrow M=1\\x=16\Rightarrow M=2\end{matrix}\right.\)

\(\Rightarrow M\) có giá trị là số tự nhiên lớn nhất là \(2\) khi \(x=16\)

....
Xem chi tiết
Akai Haruma
10 tháng 6 2021 lúc 10:32

Bạn vui lòng viết đề bằng công thức toán để được hỗ trợ tốt hơn.

Yeutoanhoc
10 tháng 6 2021 lúc 11:02

`a)A=sqrtx/(sqrtx+3)+(2sqrtx)/(sqrtx-3)-(3x+9)/(x-9)(x>=0,x ne 9)`

`=(sqrtx(sqrtx-3)+2sqrtx(sqrtx+3)-3x-9)/(x-9)`

`=(x-3sqrtx+2x+6sqrtx-3x-9)/(x-9)`

`=(3sqrtx-9)/(x-9)`

`=(3(sqrtx-3))/((sqrtx-3)(sqrtx+3))`

`=3/(sqrtx+3)`

`b)A=1/3`

`<=>3/(sqrtx+3)=1/3`

`<=>sqrtx+3=9`

`<=>sqrtx=6`

`<=>x=36(tm)`

`c)A=3/(sqrtx+3)`

`sqrtx+3>=3>0`

`=>A<=3/3=1`

Dấu "=" xảy ra khi `x=0`

Hồng Trần
9 tháng 2 2022 lúc 15:04

Cho hàm số: y= f(x) = -2x+5 (1)

a)Vẽ đô thị hàm số (1) trên mặt phẳng tọa độ 

b)Tìm tọa độ giao điểm I của hai hàm số y= -2x+5 và y= x-1 bằng phương pháp tính

 

Hoàng Ngọc Hân
Xem chi tiết
Nguyễn Lê Phước Thịnh
15 tháng 12 2023 lúc 18:53

Câu 5: B

Câu 3:

a: ĐKXĐ: \(\left\{{}\begin{matrix}x>=0\\x\ne4\end{matrix}\right.\)

b: \(P=\left(\dfrac{\sqrt{x}}{\sqrt{x}-2}+\dfrac{\sqrt{x}}{\sqrt{x}+2}\right):\dfrac{2\sqrt{x}}{x-4}\)

\(=\dfrac{\sqrt{x}\left(\sqrt{x}+2\right)+\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\cdot\dfrac{x-4}{2\sqrt{x}}\)

\(=\dfrac{x+2\sqrt{x}+x-2\sqrt{x}}{x-4}\cdot\dfrac{x-4}{2\sqrt{x}}\)

\(=\dfrac{2x}{2\sqrt{x}}=\sqrt{x}\)

c: Để P>4 thì \(\sqrt{x}>4\)

=>x>16