Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Đỗ Thị Diễm Khanh
Xem chi tiết
Nguyễn Kim Khánh Hà
10 tháng 5 2016 lúc 16:49

\(D=\left(\frac{a-b}{a^{\frac{3}{4}}+a^{\frac{1}{2}}.b^{\frac{1}{4}}}-\frac{a^{\frac{1}{2}}-b^{\frac{1}{2}}}{a^{\frac{1}{4}}+b^{\frac{1}{4}}}\right):\left(a^{\frac{1}{4}}-b^{\frac{1}{4}}\right)^{-1}\sqrt{\frac{a}{b}}\)

   \(=\left[\frac{a-b}{a^{\frac{1}{2}}\left(a^{\frac{1}{4}}+b^{\frac{1}{4}}\right)}-\frac{a^{\frac{1}{2}}-b^{\frac{1}{2}}}{a^{\frac{1}{4}}+b^{\frac{1}{4}}}\right]:\left(a^{\frac{1}{4}}-b^{\frac{1}{4}}\right)^{-1}\sqrt{\frac{b}{a}}\)

    \(=\frac{a-b-a+a^{\frac{1}{2}}.b^{\frac{1}{2}}}{a^{\frac{1}{2}}\left(a^{\frac{1}{4}}+b^{\frac{1}{4}}\right)}.\frac{1}{\left(a^{\frac{1}{4}}-b^{\frac{1}{4}}\right)}=\frac{b^{\frac{1}{2}}}{a^{\frac{1}{2}}}\frac{\left(a^{\frac{1}{4}}-b^{\frac{1}{4}}\right)}{\left(a^{\frac{1}{4}}-b^{\frac{1}{4}}\right)}\sqrt{\frac{a}{b}}.\sqrt{\frac{a}{b}}=1\)

Thanh Tâm
Xem chi tiết
Ngô Hoài Thanh
14 tháng 7 2016 lúc 14:11

Hình như đề bài sai ý bạn ak

Tống Châu Bảo Long
Xem chi tiết
LÃ ĐỨC THÀNH
22 tháng 10 2023 lúc 16:59

1C. A = { 1, 2, 3, 4} và D. A = {1; 2; 3; 4}.

LÃ ĐỨC THÀNH
22 tháng 10 2023 lúc 17:00

Đáp án sai là D. g ∈ B

LÃ ĐỨC THÀNH
22 tháng 10 2023 lúc 17:00

học tốt nha

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
3 tháng 10 2018 lúc 16:49

Đáp án : A.

Linh_Men
Xem chi tiết
Vân Sarah
23 tháng 6 2018 lúc 16:31

Cách 1:Biến đổi tương đương

1/a+1/b> 4/(a+b)

<=> (a+b)/ab> 4(a+b)

<=> (a+b)^2>4(a+b)

<=> (a+b)^2 nhỏ hơn hoặc bằng 0(luôn đúng)=> ĐPCM

Cách 2: Áp dụng bdt cô-si ta có:

a+b nhỏ hơn hoặc bằng 2 căn ab

1/a+1/b nhỏ hơn hoặc bằng 2/căn ab

nhân từng vế của 2 bdt trên => (a+b)(1/a+1/b) nhỏ hơn hặc bằng 4

=> 1/a+1/b> 4/a+b

Cấm ai copyy.Ok

k cho e nha chị,vì e là người trả lời đầu tiên e là Nguyễn Thị Thanh Vân,lớp 6,Trường THCS SÔng Lô

Lê Tuấn Kiệt
23 tháng 6 2018 lúc 16:36

Haha kêu mọi người cấm copy bài của bạn mà bạn lại đi copy.

Nguyễn Thế Hiếu
Xem chi tiết
Nguyễn Việt Lâm
20 tháng 7 2021 lúc 15:08

Nếu mẫu là bình phương, tức \(A=\dfrac{a^4}{\left(b-1\right)^2}+\dfrac{b^4}{\left(a-1\right)^2}\) thì vẫn làm tương tự:

Ta có:

\(\dfrac{a^4}{\left(b-1\right)^2}+16\left(b-1\right)+16\left(b-1\right)+16\ge4\sqrt[4]{\dfrac{a^4.16^3.\left(b-1\right)^2}{\left(b-1\right)^2}}=32a\)

\(\dfrac{b^4}{\left(a-1\right)^2}+16\left(a-1\right)+16\left(a-1\right)+16\ge32b\)

Cộng vế:

\(A+32\left(a+b\right)-32\ge32\left(a+b\right)\)

\(\Rightarrow A\ge32\)

Nguyễn Việt Lâm
20 tháng 7 2021 lúc 13:44

Ta có:

\(\dfrac{a^4}{\left(b-1\right)^3}+16\left(b-1\right)+16\left(b-1\right)+16\left(b-1\right)\ge32a\)

\(\dfrac{b^4}{\left(a-1\right)^3}+16\left(a-1\right)+16\left(a-1\right)+16\left(a-1\right)\ge32b\)

Cộng vế:

\(A+48\left(a+b\right)-96\ge32\left(a+b\right)\)

\(\Leftrightarrow A\ge96-16\left(a+b\right)\ge96-16.4=32\)

\(A_{min}=32\) khi \(a=b=2\)

Đang Quân Anh
Xem chi tiết
HaNa
25 tháng 5 2023 lúc 11:40

Theo giả thiết kết hợp sử dụng BĐT AM - GM có:

\(\left(a+b-c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}-\dfrac{1}{c}\right)=\left(a+b\right)\left(\dfrac{1}{a}+\dfrac{1}{b}\right)+1-\left[c\left(a+b\right)+c\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\right]\)

\(\le\left(a+b\right)\left(\dfrac{1}{a}+\dfrac{1}{b}\right)+1-2\sqrt{\left(a+b\right)\left(\dfrac{1}{a}+\dfrac{1}{b}\right)}=\left[\sqrt{\left(a+b\right)\left(\dfrac{1}{a}+\dfrac{1}{b}\right)}-1\right]^2\)

Suy ra \(\sqrt{\left(a+b\right)\left(\dfrac{1}{a}+\dfrac{1}{b}\right)}-1\ge2\Leftrightarrow\sqrt{\dfrac{a}{b}+\dfrac{b}{a}+2}\ge3\)

\(\Leftrightarrow\dfrac{a}{b}+\dfrac{b}{a}\ge7\)

Khi đó, sử dụng BĐT Cauchy - Schwarz ta có:

\(\left(a^4+b^4+c^4\right)\left(\dfrac{1}{a^4}+\dfrac{1}{b^4}+\dfrac{1}{c^4}\right)\ge\left[\sqrt{\left(a^4+b^4\right)\left(\dfrac{1}{a^4}+\dfrac{1}{b^4}\right)}+1\right]^2\)

\(=\left(\dfrac{a^2}{b^2}+\dfrac{b^2}{a^2}+1\right)^2=\left[\left(\dfrac{a}{b}+\dfrac{b}{a}\right)^2-1\right]^2\ge\left(7^2-1\right)^2=2304\)

Đẳng thức xảy ra khi và chỉ khi \(ab=c^2\) và \(\dfrac{a}{b}+\dfrac{b}{a}=7\)

Nguyễn Lê Phước Thịnh
25 tháng 5 2023 lúc 11:36

(a+b-c)(1/a+1/b-c)=(a+b)(1/a+1/b)+1-[c(a+b)+c(1/a+1/b)]<=(a+b)(1/a+1/b)+1-2căn (a+b)(1/a+1/b)

=[(căn (a+b)(1/a+1/b))-1]^2

=>\(\sqrt{\left(a+b\right)\left(\dfrac{1}{a}+\dfrac{1}{b}\right)}-1>=2\)

=>\(\sqrt{\dfrac{a}{b}+\dfrac{b}{a}+2}>=3\)

=>a/b+b/a>=7

(a^4+b^4+c^4)(1/a^4+1/b^4+1/c^4)>=[căn ((a^4+b^4)(1/a^4+1/b^4))+1]^2

=(a^2/b^2+b^2/a^2+1)^2=[(a/b+b/a)^2-1]^2>=(7^2-1)^2=2304

=>ĐPCM

Lê Quỳnh Mai
Xem chi tiết
dao thi mai hoa
Xem chi tiết
Robecto Kinamoken
22 tháng 2 2019 lúc 20:14

Mình tl k mình nha

Robecto Kinamoken
22 tháng 2 2019 lúc 20:17

A= a .1/2+a .1/3-a .1/4 với a=-4/5

A=a.(1/2+1/3-1/4)

A=-4/5.(6/12+4/12-3/12)

A=-4/5 . 7/12

A=\(\frac{-7}{15}\)

dao thi mai hoa
22 tháng 2 2019 lúc 20:22

mình tra trên mạng là a.7/12

Vũ Lan Anh
Xem chi tiết