cho ▲abc cân tại a .kẻ ad vuông góc với bc .cm ad là tia phân giác của góc a
Cho ABC cân tại A. kẻ AD vuông góc với BC. Chứng minh AD là tia phân giác của góc A.
xét 2 tam giác vuông BAD và CAD có :AD : cạnh chungAB = AC ( vì tam giác ABC cân tại A )=> tam giác BAD = tam giác CAD ( cạnh huyền - cạnh góc vuông)=> ^BAD = ^CAD ( 2 góc tương ứng )=> AD là tia phân giác của góc A
cho tam giác abc cân tại a,Qua b kẻ đường thẳng vuông góc với ab qua c ẻ đường thẳng vuông góc ac cắt nhau ở d
a, cm tâm giác bdc cân
b, ad là tia phân giác góc a và da là tia phân giác góc d
c,ad vuông góc với bc và ad đi qua trung điểm của bc
Cho tam giác ABC cân tại A. Qua B kẻ đường thẳng vuông góc với AB. Qua C kẻ đường thẳng vuông góc với AC. Chúng cắt nhau tại D
CM a) tam giác ABC là tam giác cân
b) AD là tia phân giác của góc A và DA là tia phan giác của góc D
c) AD vuông góc với DC và AD đi qua trung điểm của BC
Cho tam giác ABC vuông tại A, AB=6cm, AC=8cm, BM là đường phân giác. Kẻ MK vuông góc với BC tại K.
a) Tính độ dài cạnh BC.
b) CM: AM=KM.
c) Kẻ AD vuông góc vs BC tại D. CM: Tia AK là tia phân giác của góc DAC.
d) CM: AB+AC<BC+AD.
bạn nào có lời giải bài này thì cho mk xin vs ạ :<
Cho tam giác ABC cân tại A, AD là tia phân giác của góc BAC, D thuộc BC
a) CM : △ ABD = △ ACD
b) CM : AD là đường trung trực của BC
c) Kẻ DM vuông góc với AB trên cạnh AC lấy điểm N sao cho AM = AN
CM :△ ADM = △ADM , DN vuông góc với AC
d) Gọi K là trung điểm của CN trên tia đối của tia KD lấy điểm E sao cho KE = KD
CM : 3 điểm M,N,E thẳng hàng
a) Do AD là tia phân giác của ∠BAC (gt)
⇒ ∠BAD = ∠CAD
Do ∆ABC cân tại A
⇒ AB = AC
Xét ∆ABD và ∆ACD có:
AB = AC (cmt)
∠BAD = ∠CAD (cmt)
AD là cạnh chung
⇒ ∆ABD = ∆ACD (c-g-c)
⇒ BD = CD
⇒ D là trung điểm của BC (1)
Do ∆ABD = ∆ACD (cmt)
⇒ ∠ADB = ∠ADC (hai góc tương ứng)
Mà ∠ADB + ∠ADC = 180⁰ (kề bù)
⇒ ∠ADB = ∠ADC = 180⁰ : 2 = 90⁰
⇒ AD ⊥ BC (2)
Từ (1) và (2) ⇒ AD là đường trung trực của BC
b) Sửa đề: Chứng minh ∆ADM = ∆ADN
Do ∠BAD = ∠CAD (cmt)
⇒ ∠MAD = ∠NAD
Xét ∆ADM và ∆ADN có:
AD là cạnh chung
∠MAD = ∠NAD (cmt)
AM = AN (gt)
⇒ ∆ADM = ∆ADN (c-g-c)
⇒ ∠AMD = ∠AND = 90⁰ (hai góc tương ứng)
⇒ DN ⊥ AN
⇒ DN ⊥ AC
d) Do K là trung điểm của CN (gt)
⇒ CK = KN
Xét ∆DKC và ∆EKN có:
CK = KN (cmt)
∠DKC = ∠EKN (đối đỉnh)
KD = KE (gt)
⇒ ∆DKC = ∆EKN (c-g-c)
⇒ ∠KDC = ∠KEN (hai góc tương ứng)
Mà ∠KDC và ∠KEN là hai góc so le trong
⇒ EN // CD
⇒ EN // BC (3)
∆AMN có:
AM = AN (gt)
⇒ ∆AMN cân tại A
⇒ ∠AMN = (180⁰ - ∠MAN) : 2
= (180⁰ - ∠BAC) : 2 (4)
∆ABC cân tại A (gt)
⇒ ∠ABC = (180⁰ - ∠BAC) : 2 (5)
Từ (4) và (5) ⇒ ∠AMN = ∠ABC
Mà ∠AMN và ∠ABC là hai góc đồng vị
⇒ MN // BC (6)
Từ (3) và (6) kết hợp với tiên đề Euclide ⇒ M, N, E thẳng hàng
Cho tam giác ABC cân tại A. Kẻ AD vuông góc với BC. Chứng minh rằng AD là tia phân giác của góc A ?
C1: Xét \(\Delta ABD\) và \(\Delta ACD\) có:
AD (chung)
\(\widehat{ADB}=\widehat{ADC}\) ( = 900)
AB = AC ( \(\Delta ABC\)cân tại A )
Do đó: \(\Delta ABD=\Delta ACD\) (cạnh huyền - cạnh góc vuông)
cho tam giác ABC vuông tại A, kẻ BDlà tia phân giác của góc B .từ D kẻ DH vuông góc với BC tại H.Gọi K là giao điểm của DH và AB.
A)CM : AD=DH
B)so sánh AD và DC
C) CM : tam giác KBC là tam giác cân
a) Xét tam giác DAB và tam giác DHB:
góc DAB= góc DHB =90o
DB chung
góc DBA= góc DBH
=> tam giác DAB = tam giác DHB (cạnh huyền _góc nhọn)
=> DA=DH (2 cạnh tương ứng)
b)
Ta có: DA = DH (cmt) (1)
và trong tam giác CHD :
DH là cạnh góc vuông
DC là cạnh huyền
=> DH < DC (2)
Từ (1) và (2) => AD < DH
c) Xét tam giác DAK và tam giác DHC:
góc DAK = góc DHC = 90o
DA = DH (cmt)
góc KDA = góc CDH (đối đỉnh)
=> tam giác DAK = tam giác DHC (cạnh góc vuông_ góc nhọn)
=> AK = HC (2 cạnh tương ứng)
Ta có: AB = HB (do tam giác DAB = tam giác DHB)
và AK = HC (cmt)
mà BK = AB + AK
BC = HB + HC
=> BK = BC
=> tam giác KBC cân
Cô nêu cách trình bày khác của câu c nhé. :)
Xét tam giác KBC, có KH, CK là các đường cao nên D là trực tâm của tam giác KBC. Từ đó suy ra BD là đường cao của tam giác KBC. Mà BD lại là đường phân giác nên tam giác KBC cân tại B.
Cho tam giác ABC vuông tại A. Kẻ AH vuông góc với BC, tia phân giác góc HAC cắt BC tại D.
a, Chứng minh tam giác ABD cân.
b, Từ H kẻ đường thẳng vuông góc với AD cắt AC tại E. Chứng minh: DE vuông góc với AC.
c, Cho AB=15 cm, AH=12 cm. Tính AD. Từ đó so sánh AD và HE.
Cho tam giác ABC vuông tại A. Kẻ AH vuông góc với BC, tia phân giác góc HAC cắt BC tại D.
a, Chứng minh tam giác ABD cân.
b, Từ H kẻ đường thẳng vuông góc với AD cắt AC tại E. Chứng minh: DE vuông góc với AC.
c, Cho AB=15 cm, AH=12 cm. Tính AD. Từ đó so sánh AD và HE.
Nhờ vẽ hình cho mình luôn nha