GIÁ TRỊ NHỎ NHẤT CỦA 10+4X^2+4X
GIÁ TRỊ NHỎ NHẤT CỦA 10+4x\(^2\)+4x
Ta có : \(4x^2+4x+10\)
\(\Rightarrow\left(2x\right)^2+2.2.x+1-1+10\)
\(\Rightarrow\left(2x+1\right)^2+9>=9\)
Vậy phương trình đã cho có GTNN = 9
\(\Leftrightarrow2x+1=0\) khi \(x=-\frac{1}{2}\)
Đặt A = 10 + 4x2 + 4x. Xét 4x2 + 4x
- Nếu x < -1 thì 4x2 > 0 > 4x => 4x2 + 4x > 0
- Nếu x = -1 hoặc x = 0 thì 4x2 + 4x = 0
- Nếu x > 0 thì 4x2 > 0 và 4x > 0 => 4x2 + 4x > 0
Vậy chỉ xét x = -1 hoặc x = 0 để A đạt GTNN
A đạt GTNN là 10 + 0 = 10 <=> x = -1 hoặc x = 0
a, Tìm giá trị lớn nhất của biểu thức: A=4x-x^2+3
b. Tìm giá trị nhỏ nhất của biểu thức:B=4x^2-12x+15
c,Tìm giá trị nhỏ nhất của biểu thức:C=4x^2+2y^2-4xy-4y+1
a)
\(A=4x-x^2+3=-\left(x^2-4x-3\right)=-\left(x^2-4x+4\right)+7=-\left(x-2\right)^2+7\le7\)
Daaus = xayr ra khi: x = 2
b) \(B=4x^2-12x+15=4\left(x^2-3x+9\right)-21=4\left(x-3\right)^2-21\ge-21\)
Dấu = xảy ra khi x = 3
c) \(C=4x^2+2y^2-4xy-4y+1=\left(4x^2-4xy+y^2\right)+\left(y^2-4y+4\right)-3=\left(2x-y\right)^2+\left(y-2\right)^2-3\ge-3\)
Dấu = xảy ra khi
2x = y và y = 2
=> x = 1 và y = 2
a) A = \(-x^2+4x+3=-\left(x-2\right)^2+7\le7\)
Dấu "=" <=> x = 2
b) \(4x^2-12x+15=\left(2x-3\right)^2+6\ge6\)
Dấu "=" xảy ra <=> \(x=\dfrac{3}{2}\)
c) \(4x^2+2y^2-4xy-4y+1\)
= \(\left(4x^2-4xy+y^2\right)+\left(y^2-4y+4\right)-3\)
= \(\left(2x-y\right)^2+\left(y-2\right)^2-3\ge-3\)
Dấu "=" <=> \(\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)
Tìm giá trị nhỏ nhất của các biểu thức
H = \(\dfrac{-2021}{4x^2+4x+3}\)
I = \(\dfrac{-2019}{5x^2-2x+10}\)
1) \(4x^2+4x+3=\left(2x+1\right)^2+2\ge2\)
\(\Rightarrow\dfrac{2021}{4x^2+4x+3}\le\dfrac{2021}{2}\Rightarrow H=-\dfrac{2021}{4x^2+4x+3}\ge-\dfrac{2021}{2}\)
\(ĐTXR\Leftrightarrow x=-\dfrac{1}{2}\)
2) \(5x^2-2x+10=5\left(x^2-\dfrac{2}{5}x+\dfrac{1}{25}\right)+\dfrac{49}{5}=5\left(x-\dfrac{1}{5}\right)^2+\dfrac{49}{5}\ge\dfrac{49}{5}\)
\(\Rightarrow I=\dfrac{-2019}{5x^2-2x+10}\ge-\dfrac{10095}{49}\)
\(ĐTXR\Leftrightarrow x=\dfrac{1}{5}\)
Tìm giá trị nhỏ nhất của biểu thức
\(\sqrt{4x^2+4x+10-2}\)
\(\sqrt{4x^2+4x+8}\)= \(\sqrt{7+\left[\left(2x\right)^2+2×2×x+1\right]}\)
= \(\sqrt{7+\left(2x+1\right)^2}\)
Vậy GTNN là \(\sqrt{7}\)đạt được khi x = \(\frac{-1}{2}\)
=căn 4(x +1/2)2 -1/4 +8 = \(\sqrt{\frac{31}{4}}\)
a) Tìm giá trị nhỏ nhất của biểu thức: S= \(\dfrac{5x^4+4x^2+10}{x^4+2}\)
b) Tìm giá trị lớn nhất của biểu thức: T=\(\dfrac{2x^4-4x^2+8}{x^4+4}\)
c) Cho a là hằng số và a>0. Tìm giá trị nhỏ nhất của biểu thức: M=\(\dfrac{8y^8+2a\left(y-3\right)^2+2a^2}{4y^8+a^2}\)
tìm GTNN,GTLN của biểu thức sau
a)giá trị nhỏ nhất
A= 9x^2-x+5
b) Giá trị nhỏ nhất
B= 4x^2+2y^2+4xy+2018
c) gia tri lớn nhất
C= 3x-4x^2+10
d) giá trị lớn nhất
D= -5x^2-y^2+2xy-4x+2016
giúp mik với.GẤP LẮM Ạ
a) = 9(x2 - 2.x/2.9 + 1/324) - 9/324 +5
GTNN A = 4,97
b) = (2x +y)2 + y2 + 2018
GTNN B = 2018 khi x=0;y=0
c) = -4(x2 - 2.3x/ 4.2 + 9/16) +9/16 +10
GTLN C = 169/16
d) = -(x-y)2 - (2x +1) +1 + 2016
GTLN D = 2017
(trg bn cho bài khó dữ z, làm hại cả não tui)
Bài 2: Tìm giá trị nhỏ nhất của biểu thức M = x ^ 2 + 4x + 10
\(M=x^2+4x+10\)
\(=\left(x^2+4x+4\right)+6\)
\(=\left(x+2\right)^2+6\ge6\).
Vậy: \(MinM=6\). Dấu đẳng thức xảy ra khi và chỉ khi \(x+2=0\Leftrightarrow x=-2.\)
`M = x^2 + 4x + 4 + 6 = (x+2)^2 + 6 >= 0 + 6 =6`.
ĐTXR `<=> x + 2 = 0 <=> x = -2`.
Vậy Min M = `6 <=> x = -2`.
giá trị nhỏ nhất của 4x^2-12x+10
\(4x^2-12x+10=\left(2x-3\right)^2+1\ge1\)
Vậy Min của biểu thức trên là 1 dấu = xay ra khi x=3/2
tìm giá trị nhỏ nhất của P = 10 / - x^2 + 4x - 9
- giúp mình với mình cần gấp lắm ạ