Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Big City Boy
Xem chi tiết
Nguyễn Việt Lâm
21 tháng 3 2022 lúc 20:14

Ta có:

\(\left(a^2+1\right)+\left(b^2+1\right)+\left(c^2+1\right)+\left(a^2+b^2\right)+\left(b^2+c^2\right)+\left(c^2+a^2\right)\)

\(\ge2a+2b+2c+2ab+2bc+2ca=12\)

\(\Rightarrow3\left(a^2+b^2+c^2\right)+3\ge12\)

\(\Rightarrow a^2+b^2+c^2\ge3\)

\(P=\dfrac{a^3}{b}+\dfrac{b^3}{c}+\dfrac{c^3}{a}=\dfrac{a^4}{ab}+\dfrac{b^4}{bc}+\dfrac{c^4}{ca}\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{ab+bc+ca}\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{a^2+b^2+c^2}\)

\(P\ge a^2+b^2+c^2\ge3\)

\(P_{min}=3\) khi \(a=b=c=1\)

VUX NA
Xem chi tiết
Nguyễn Việt Lâm
9 tháng 8 2021 lúc 15:36

\(\dfrac{a^3}{b}+\dfrac{b^3}{c}+\dfrac{c^3}{a}=\dfrac{a^4}{ab}+\dfrac{b^4}{bc}+\dfrac{c^4}{ca}\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{ab+bc+ca}\ge\dfrac{\left(a^2+b^2+c^2\right)\left(ab+bc+ca\right)}{ab+bc+ca}=a^2+b^2+c^2\)

Mặt khác ta có:

\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2+\left(a-1\right)^2+\left(b-1\right)^2+\left(c-1\right)^2\ge0\)

\(\Leftrightarrow3\left(a^2+b^2+c^2\right)\ge2\left(a+b+c+ab+bc+ca\right)-3=9\)

\(\Rightarrow a^2+b^2+c^2\ge3\)

Từ đó suy ra đpcm

pro
Xem chi tiết
pro
Xem chi tiết
_Halcyon_:/°ಠಿ
28 tháng 5 2021 lúc 23:27

undefined

Nguyễn An
Xem chi tiết
Hoang Tran
Xem chi tiết
Nguyễn Việt Lâm
3 tháng 8 2021 lúc 14:58

Đặt \(\left(\dfrac{1}{a};\dfrac{1}{b};\dfrac{1}{c}\right)=\left(x;y;z\right)\)

\(\Rightarrow x+y+z+xy+yz+zx=6\)

\(P=x^3+y^3+z^3\)

Ta có:

\(x^3+x^3+1\ge3x^2\) 

Tương tự: \(2y^3+1\ge3y^2\) ; \(2z^3+1\ge3z^2\)

\(\Rightarrow2\left(x^3+y^3+z^3\right)\ge3\left(x^2+y^2+z^2\right)-3\) 

\(\Rightarrow P\ge\dfrac{3}{2}\left(x^2+y^2+z^2-1\right)\)

Lại có: với mọi x;y;z thì:

\(\left(x-1\right)^2+\left(y-1\right)^2+\left(z-1\right)^2+\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\)

\(\Leftrightarrow3\left(x^2+y^2+z^2\right)\ge2\left(x+y+z+xy+yz+zx\right)-3=9\)

\(\Rightarrow x^2+y^2+z^2\ge3\)

\(\Rightarrow P\ge\dfrac{3}{2}\left(3-1\right)=3\) (đpcm)

Bách Bách
Xem chi tiết
Bách Bách
11 tháng 6 2021 lúc 12:06

Cho \(a+b+c=1\) nhé các bạn.

Trần Minh Hoàng
11 tháng 6 2021 lúc 17:46

Đặt ab + bc + ca = q; abc = r. Ta có:

\(A=\dfrac{\left(ab+bc+ca\right)+6\left(a+b+c\right)+27}{abc+3\left(ab+bc+ca\right)+9\left(a+b+c\right)+27}-\dfrac{1}{3\left(ab+bc+ca\right)}\)

\(A=\dfrac{q+33}{r+3q+36}-\dfrac{1}{3q}\).

Theo bất đẳng thức Schur: \(a^3+b^3+c^3+3abc\ge a^2b+b^2c+c^2a+ab^2+bc^2+ca^2\)

\(\Leftrightarrow\left(a+b+c\right)^3+9abc\ge4\left(a+b+c\right)\left(ab+bc+ca\right)\)

\(\Leftrightarrow9r\ge4q-1\Leftrightarrow r\ge\dfrac{4q-1}{9}\).

Từ đó \(A\le\dfrac{q+33}{\dfrac{4q-1}{9}+3q+36}-\dfrac{1}{3q}\)

\(\Rightarrow A\leq \frac{27q^2+860q-323}{93q^2+969q}\)

\(\Rightarrow A+\dfrac{1}{10}=\dfrac{\left(3q-1\right)\left(121q+3230\right)}{30q\left(31q+323\right)}\le0\). (Do \(q=ab+bc+ca\le\dfrac{\left(a+b+c\right)^2}{3}=\dfrac{1}{3}\))

\(\Rightarrow A\leq \frac{-1}{10}\). Dấu "=" xảy ra khi và chỉ khi a = b = c = 1.

 

 

Lê Đức Lương
Xem chi tiết
dinh huong
Xem chi tiết
Akai Haruma
27 tháng 8 2021 lúc 0:29

Lời giải:
Theo hệ quả quen thuộc của bđt AM-GM:
$(a+b+c)^2\leq 3(a^2+b^2+c^2)\leq 9$

$\Rightarrow a+b+c\leq 3$ (đpcm)

Từ đây ta có:

\(E\leq \frac{a}{\sqrt[3]{(a+b+c)a+bc}}+\frac{b}{\sqrt[3]{(a+b+c)b+ac}}+\frac{c}{\sqrt[3]{c(a+b+c)+ab}}\)

\(=\frac{a}{\sqrt[3]{(a+b)(a+c)}}+\frac{b}{\sqrt[3]{(b+c)(b+a)}}+\frac{c}{\sqrt[3]{(c+a)(c+b)}}\)

\(\leq \frac{\sqrt[3]{2}}{3}(\frac{a}{2}+\frac{a}{a+b}+\frac{a}{a+c})+\frac{\sqrt[3]{2}}{3}(\frac{b}{2}+\frac{b}{b+a}+\frac{b}{b+c})+\frac{\sqrt[3]{2}}{3}(\frac{c}{2}+\frac{c}{c+a}+\frac{c}{c+b})\)

\(=\frac{\sqrt[3]{2}(a+b+c)}{6}+\frac{\sqrt[3]{2}}{3}(\frac{a+b}{a+b}+\frac{b+c}{b+c}+\frac{c+a}{c+a})\leq \frac{3\sqrt[3]{2}}{2}\)

Vậy.................