Cho đa thức \(f\left(x\right)=\text{ax}^2+b\text{x}+c\left(a\ne0,a+c=b\right)\),a,b,c là các hằng số) có hai nghiệm trong đó có một nghiệm là 1, hãy tìm nghiệm còn lại
Cho a,b,c là các số thực và \(a\ne0\). Chứng minh rằng nếu đa thức \(f\left(x\right)=a\left(ax^2+bx+c\right)^2+b\left(ax^2+bx+c\right)+c\) vô nghiệm thì phương trình \(g\left(x\right)=ax^2+bx-c\) có hai nghiệm trái dấu
Với \(c=0\Rightarrow f\left(x\right)=0\) có nghiệm \(x=0\) (loại)
TH1: \(a;c\) trái dấu
Xét pt \(f\left(x\right)=0\Leftrightarrow a\left(ax^2+bx+c\right)^2+b\left(ax^2+bx+c\right)+c=0\)
Đặt \(ax^2+bx+c=t\) \(\Rightarrow at^2+bt+c=0\) (1)
Do a; c trái dấu \(\Leftrightarrow\) (1) luôn có 2 nghiệm trái dấu.
Không mất tính tổng quát, giả sử \(t_1< 0< t_2\)
\(\Rightarrow\left[{}\begin{matrix}ax^2+bx+c=t_1\\ax^2+bx+c=t_2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}ax^2+bx+c-t_1=0\left(2\right)\\ax^2+bx+c-t_2=0\left(3\right)\end{matrix}\right.\)
Mà a; c trái dấu nên:
- Nếu \(a>0\Rightarrow c< 0\Rightarrow c-t_2< 0\Rightarrow a\left(c-t_2\right)< 0\)
\(\Rightarrow\) (3) có nghiệm hay \(f\left(x\right)=0\) có nghiệm (loại)
- Nếu \(a< 0\Rightarrow c>0\Rightarrow c-t_1>0\Rightarrow a\left(c-t_1\right)< 0\)
\(\Rightarrow\left(2\right)\) có nghiệm hay \(f\left(x\right)=0\) có nghiệm (loại)
Vậy đa thức \(f\left(x\right)\) luôn có nghiệm khi a; c trái dấu
\(\Rightarrow\)Để \(f\left(x\right)=0\) vô nghiệm thì điều kiện cần là \(a;c\) cùng dấu \(\Leftrightarrow ac>0\)
Khi đó xét \(g\left(x\right)=0\) có \(a.\left(-c\right)< 0\Rightarrow g\left(x\right)=0\) luôn có 2 nghiệm trái dấu (đpcm)
1. Cho x+ y = 1998. Tính giá trị biểu thức:
x(x +5) + y(y + 5) + 2(xy - 3)
2. Cho đa thức: \(f\left(x\right)=x^2+mx-12\) (m là hằng số)
Tìm các nghiệm của đa thức f(x), biết rằng f(x) có một nghiệm là -3
3. Tìm hệ số a, b, c của đa thức \(P\left(x\right)=ax^2+bx+c\)biết P(2) = -4 và P(x) có hai nghiệm là -1 và -2
Cho đa thức ƒ (x)=ax2+bx+c(a≠0,a+c=b),a,b,c là các hằng số) có hai nghiệm trong đó có một nghiệm là 1, hãy tìm nghiệm còn lại
\(a+c=b\Rightarrow a-b+c=0\)
Ta thấy \(f\left(-1\right)=a-b+c=0\)Vậy x = -1 là 1 nghiệm của f(x)
Với \(a\ne0\)thì f(x) là 1 đa thức bậc hai và có nhiều nhất là 2 nghiệm, 1 nghiệm = 1 theo đề bài thì nghiệm còn lại như chứng minh trên là: -1.
Cho đa thức \(P\left(x\right)=ax^2+bx+c\). Trong đó \(a,b,c\) là các hằng số thỏa mãn \(\dfrac{a}{1}=\dfrac{b}{2}=\dfrac{c}{3}\) và \(a\ne0\). Tính \(\dfrac{P\left(-2\right)-3P\left(1\right)}{a}\).
P(x)=\(ax^2+bx+c\) (1)(a\(\ne0\) )
Ta có :
\(\dfrac{a}{1}=\dfrac{b}{2}=\dfrac{c}{3}\)\(\Rightarrow\left\{{}\begin{matrix}b=2a\\c=3a\end{matrix}\right.\)(2)
Thay(2) vào (1)\(\Rightarrow P\left(x\right)=ax^2+2ax+3a\)
\(\Rightarrow\dfrac{P\left(-2\right)-3P\left(-1\right)}{a}=\dfrac{4a-4a+3a-3\left(a-2a+3a\right)}{a}\)=\(\dfrac{3a-3a+6a-9a}{a}=\dfrac{-3a}{a}=-3\)
Cho \(ax^2+bx+c=0\) có nghiệm, \(f\left(x\right)=\alpha x^2+\beta x+\gamma\) \(\left(a.\alpha\ne0\right)\) có hai nghiệm và khoảng hai nghiệm đó chứa \(\left(0;2\right)\). Chứng minh \(a.f\left(0\right)x^2+b.f\left(1\right)x+c.f\left(2\right)=0\) có nghiệm
\(\text{Chứng minh rằng nếu }x_1\text{ và }x_2\text{ là hai nghiệm khác nhau của đa thức :}\)
\(P\left(x\right)=ax^2+bx+c\left(a\ne0\right)\text{ thì }P\left(x\right)=a\left(x-x_1\right)\left(x-x_2\right)\)
x1 ; x2 là 2 ngiệm của P(x) => P(x1) = P (x2) = 0
=> ax12 + bx1 + c = ax22 + bx2 + c = 0
=> ax12 + bx1 + c - ( ax22 + bx2 + c) = 0
<=> a. (x12 - x22 ) + b.(x1 - x2) = 0 <=> a. (x1 - x2). (x1 + x2) + b.(x1 - x2) = 0
<=> (x1 - x2). [ a.(x1 + x2) + b ] = 0 mà x1 ; x2 khác nhau nên a.(x1 + x2) + b = 0 => b = - a.(x1 + x2) (*)
+) ax12 + bx1 + c = 0 => c = - ( ax12 + bx1) = - x1. (ax1 + b) = - x1 . (-ax2) = ax1. x2 (Do (*))
vậy c = ax1.x2 (**)
Thay b ; c từ (*) và (**) vào P(x) ta được P(x) = ax2 -ax.(x1 + x2) + ax1.x2 = ax2 - ax.x1 - ax.x2 + ax1.x2
= ax. (x - x1) - ax2 . (x - x1) = (ax - ax2). (x - x1) = a. (x - x2). (x - x1) => ĐPCM
a) Chứng tỏ rằng đa thức: \(f\left(x\right)=5x^3-7x^2+4x-2\) có một trong các nghiệm là 1
b) Chứng tỏ rằng đa thức \(b\left(x\right)=ax^3+bx^3+cx+d\) có một trong các nghiệm là 1 nếu a + b + c+d =0
HELP ME!
\(a)\)\(5x^3-7x^2+4x-2=0\)
\(\Leftrightarrow\)\(\left(5x^3-5x^2\right)-\left(2x^2-4x+2\right)=0\)
\(\Leftrightarrow\)\(5x^2\left(x-1\right)-\left(\sqrt{2}x-\sqrt{2}\right)^2=0\)
\(\Leftrightarrow\)\(5x^2\left(x-1\right)-2\left(x-1\right)^2=0\)
\(\Leftrightarrow\)\(5x^2\left(x-1\right)-\left(2x-2\right)\left(x-1\right)=0\)
\(\Leftrightarrow\)\(\left(x-1\right)\left(5x^2-2x+2\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x-1=0\\5x^2-2x+2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\\5x^2-2x+2=0\end{cases}}}\)
Vậy \(x=1\) là một trong các nghiệm của đa thức \(f\left(x\right)\)
Hok tốt nhé eiu :>
câu a)
\(5-7+4-2=0\)
\(5x^3-7x+4x-2=0\)
thay x=1 ta được
\(5-7+4-2=0\)
câu B)
có \(a+b+c+d=0.\)
\(ax^3+bx^3+cx+d=0\)
thay x=1
ta được
\(a.1+b.1+c.1+d.1=0\)
vậy x=1 là nghiệm của pt
,
Cho đa thức bậc hai: f(x) = ax2 + bx + c, trong đó a, b, c là những hằng số.
a) Biết a + b + c = 0. Chứng minh f(x) có một nghiệm là x = 1, áp dụng để tìm các nghiệm của đa thức f(x) = 8x2 – 6x – 2.
b) Biết a – b + c = 0. Chứng minh f(x) có một nghiệm là x = –1, áp dụng để tìm các nghiệm của đa thức f(x) = 7x2 + 11x + 4
Từ a+b+c=0 ta có b= -(a+c) (*)
Thay (*) vào pt bậc 2 ta có
ax^2 - (a+c)x + c = 0
ax^2 - ax -cx + c = 0
ax(x -1)- c(x-1) = 0
(x -1)(ax-c) = 0
Vậy x-1=0 hay x=1
ax-c =0 hay x= c/a
Cho biết 1 và 2 là hai nghiệm của đa thức \(f\left(x\right)=x^3+ax^2+bx+c\) và a+b= -16. Tính a,b,c
\(\left\{{}\begin{matrix}1+a+b+c=0\\8+4a+2b+c=0\\a+b=-16\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a+b+c=-1\\4a+2b+c=-8\\a+b=-16\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a=\dfrac{9}{2}\\b=-\dfrac{41}{2}\\c=15\end{matrix}\right.\)