tìm n
1/2 . 2n+4.2n=9.5n
Tìm x, biết:
a. \(\dfrac{1}{2}.2^{n^{ }}+4.2^n=9.5^n\) b. \(2^n\left(\dfrac{1}{2}+4\right)=\) 9.5n c.2n-1.9=9.5n
Tìm n biết
a, \(\dfrac{1}{2}\). 2n + 4. 2n = 9.5n
\(\Leftrightarrow2^n\cdot\dfrac{9}{2}=9\cdot5^n\)
\(\Leftrightarrow2^n=2\cdot5^n\)
\(\Leftrightarrow2^{n-1}=5^n\)
Đến đây thì hình như là lớp 12 mới học, xin lỗi bạn!
Tìm số nguyên n, biết
1 ) 2 − 1 .2 n + 4.2 n = 9.2 5
2 ) 1 2 .2 n + 4.2 n = 9.2 5
3 ) 32 − n .16 n = 2048
4 ) 5 2 n + 1 = 125 n + 25
Bài toán 4: Viết các số sau dưới dạng tổng các luỹ thừa của 10.
213;
421;
2009;
abc ;
abcde
Bài toán 5 So sánh các số sau, số nào lớn hơn?
a) 2711 và 818
b) 6255 và 1257
c) 523 và 6. 522 d) 7. 213 và 216
Bài toán 6: Tính giá trị các biểu thức sau:
a) a3.a9 b) (a5)7 c) (a6)4.a12 d) 56 :53 + 33 .32
e) 4.52 - 2.32
Bài toán 7. Tìm n � N * biết.
1
9
b) (22 : 4).2n 4;
c) .34.3n 37 ;
e) .2n 4.2n 9.5n ; g) 32 2n 128;
h) 2.16 �2n 4.
a) 32.3n 35 ;
1
2
1
9
d) .27n 3n ;
Bài toán 8 Tìm x �N biết.
a) ( x - 1 )3 = 125 ;
b) 2x+2 - 2x = 96;
c) (2x +1)3 = 343 ;
d) 720 : [ 41 - (2x - 5)] = 23.5.
e) 16x <1284
Bài toán 9 Tính các tổng sau bằng cách hợp lý.
A = 2 + 22 + 23 + 24 +...+2100
B = 1 + 3 + +32 +32 +...+ 32009
C = 1 + 5 + 52 + 53 +...+ 51998
D = 4 + 42 + 43 +...+ 4n
Bài toán 4: Viết các số sau dưới dạng tổng các luỹ thừa của 10.
213 = 2 . 100 + 1 . 10 +3 = 2. 10^2 + 1.10 + 3 . 10^0
421=4.100 + 2.10 + 1 = 4.10^2 + 2.10 + 1. 10^0
2009; = 2. 1000 + 9 = 2. 10^3 + 9 . 10^0
abc = a . 100 + b . 10 + c = a.10^2 + b.10 + c.10^0
abcde = a.10000 + b . 1000 + c . 100 + d . 10 + e = a . 10^4 + b. 10^3 + c.10^2 + d .10 + e . 10 ^0
Tính l i m 3 n - 4 . 2 n - 1 - 3 3 . 2 n + 4 n bằng:
A. +∞.
B. 4.
C. 0.
D. 3.
Giá trị của l i m 3 n - 4 . 2 n - 1 - 3 3 . 2 n + 4 n bằng
A. + ∞
B. - ∞
C. 0
D. 1
a) (2x-1)6 = (2x-1)8
b) (4x-3)4 = (4x-3)10
c)23x + 2 = 9x+5
d)\(\frac{1}{9}:27^n=3^n\)
e)\(\frac{2^n}{2}+4.2n=2^{88}\)
nhé
a)(2x-1)6=(2x-1)8
=> (2x-1)8-(2x-1)6=0
=> (2x-1)6.((2x-1)2-1)=0
+)th1(2x-1)6=0
+)th2((2x-1)2-1)=0
a) \(\left(2x-1\right)^6=\left(2x-1\right)^8\)
\(\Rightarrow\left(2x-1\right)\in\left\{\pm1;0\right\}\)
TH1 : \(2x-1=0\) TH2 : \(2x-1=-1\) TH3 : \(2x-1=1\)
\(2x=1\) \(2x=0\) \(2x=2\)
\(x=\frac{1}{2}\) \(x=0\) \(x=1\)
Vậy \(x\in\left\{\frac{1}{2};0;1\right\}\)
b) Tương tự
Tìm n biết n thỏa mãn: \(C_{2n+1}^1+C_{2n+1}^2+...+C_{2n+1}^n=2^{20}-1\)
Ta có : \(C^k_{2n+1}=C^{2n+1-k}_{2n+1}\)
\(\Rightarrow2VT=C^1_{2n+1}+C^2_{2n+1}+...+C^{2n}_{2n+1}=2^{21}-2\)
\(\Leftrightarrow2^{2n+1}-C^0_{2n+1}-C^{2n+1}_{2n+1}=2^{21}-2\)
\(\Leftrightarrow2n+1=21\Leftrightarrow n=10\)
\(\sum\limits^{2n+1}_{k=0}C^k_{2n+1}=\left(1+1\right)^{2n+1}=2^{2n+1}\)
Lại có \(C^0_{2n+1}+C^1_{2n+1}+...+C^n_{2n+1}=C^{2n+1}_{2n+1}+C^{2n}_{2n+1}+...+C^{n+1}_{2n+1}\)
\(\Rightarrow C^0_{2n+1}+C^1_{2n+1}+...C^n_{2n+1}=\dfrac{2^{2n+1}}{2}\)
\(\Leftrightarrow2^{20}-1=2^{2n}-C^0_{2n+1}\)
\(\Leftrightarrow2^{20}-1=2^{2n}-1\)
\(\Leftrightarrow2n=20\)
\(\Leftrightarrow n=10\)
tìm n ∈ Z để 2n2 + 5n - 1 ⋮ 2n - 1
chứng minh rằng với mọi số nguyên n thì
a) n2(n+1) + 2n(n+1) ⋮ 6
b) (2n-1)3 - (2n-1) ⋮ 8
c) (n+7)2 - (n-5)2 ⋮ 24
1:
2n^2+5n-1 chia hết cho 2n-1
=>2n^2-n+6n-3+2 chia hết cho 2n-1
=>2n-1 thuộc {1;-1;2;-2}
mà n nguyên
nên n=1 hoặc n=0
2:
a: A=n(n+1)(n+2)
Vì n;n+1;n+2 là 3 số liên tiếp
nên A=n(n+1)(n+2) chia hết cho 3!=6
b: B=(2n-1)[(2n-1)^2-1]
=(2n-1)(2n-2)*2n
=4n(n-1)(2n-1)
Vì n;n-1 là hai số nguyên liên tiếp
nên n(n-1) chia hết cho 2
=>B chia hết cho 8
c: C=n^2+14n+49-n^2+10n-25=24n+24=24(n+1) chia hết cho 24