cho tam giác ABC vuông tại A, vẽ đường trung tuyến BM. Trên tia đối tia MB lấy điểm D sao cho MB = MD. CMR:
a. tam giác ABM = tam giác CDM
b. BC >CD
c. góc ABM > góc MBC
cho tam giác abc có góc a bằng 90 độ. vẽ đường trung tuyến bm. trên tia đối của tia mb lấy điểm d sao cho md=mb.c/m:
a)tam giác ABM=tam giác CDM
b)BC>CD
c)góc ABM>góc MBC
Cho tam giác ABC vuông tại A , kẻ trung tuyến BM . Trên tia đối của tia MB lấy điểm D sao cho MD = MB . C/m
a. tam giác ABE = tam giác HBE
b. AB // CD
c. góc ABM > góc MBC
d. từ M kẻ MK vuông góc BC , c/m MA>MK
cho tam giác ABC vuông tại A, trung tuyến BM. Trên tia đối của tia MB lấy điểm E sao cho ME=BM. Chứng minh:
a) Tam giác ABM=tam giác CEM
b) góc ABM>góc MBC
Con chỉ vẽ minh họa đc thôi, bác vẽ ^A vuông hộ con.
a, Xét \(\Delta\)ABM và \(\Delta\)CEM ta có
^M _ chung
BM = ME (gt)
^B = ^E (sole trog)
=> \(\Delta\)ABM = \(\Delta\)CEM (c.g.c)
14 tháng 6 2020 lúc 16:48
Cho tam giác ABC vuông tại A có AB= 12cm; BC= 20cm. BM là đường trung tuyến. Trên tia đối của tia MB lấy điểm D sao cho MD = MB
a) Tính AC
b) CM: AB = CD; AC vuông góc với CD
c) CM: góc ABM > góc CBM
a: \(AC=\sqrt{20^2-12^2}=16\left(cm\right)\)
b: Xét tứ giác ABCD có
M là trung điểm của AC
M là trung điểm của BD
Do đó; ABCD là hình bình hành
Suy ra: AB=CD và AB//CD
hay AC⊥CD
Cho tam giác ABC vuông tại A, M là trung điểm của AC. Trên tia đối của tia MB lấy điểm D sao cho MB = MD. Đường thẳng qua B song song với AC cắt tia DC tại điểm E.
a. Chứng minh: Tam giác ABM=Tam giác CDM
b. Chứng minh: AB=CD và AC vuông góc DE
c. Chứng minh: C là trung điểm của DE
a: Xét ΔABM và ΔCDM có
MA=MC
góc AMB=góc CMD
MB=MD
Do đó: ΔABM=ΔCDM
b: ΔABM=ΔCDM
nên AB=CD và góc ABM=góc CDM
=>AB//CD
=>CE vuông góc với AC
=>AC vuông góc DE
Cho tam giác ABC vuông tại A ( AB < AC ) , BM là đường trung tuyến của tam giác ABC. Trên tia đối của tia MB lấy điểm D sao cho MD = MB.
a) Cho biết AC = 8cm , BC = 10cm. Tính AB
b) Chứng minh AB = CD, AC vuông góc CD
c) Chứng minh AB + BC > 2BM
d) Chứng minh góc CBM < góc ABM
CM :
a) Áp dụng định lí Pi - ta - go vào t/giác ABC vuông tại A, ta có:
BC2 = AB2 + AC2
=> AB2 = BC2 - AC2 = 102 - 82 = 100 - 64 = 36
=> AB = 6 (cm)
b) Xét t/giác ABM và t/giác CDM
có: BM = MD (gt)
\(\widehat{AMB}=\widehat{CMD}\) (đối đỉnh)
AM = CM (gt)
=> t/giác ABM = t/giác CDM (c.g.c)
=> AB = CD (2 cạnh t/ứng)
=> \(\widehat{A}=\widehat{C}\) (2 góc t/ứng)
Mà \(\widehat{A}=90^0\) => \(\widehat{C}=90^0\) => AC \(\perp\)CD
c) Xét t/giác ACD
Ta có: BC + CD > BD (bất đẳng thức t/giác)
Mà CD = AB và 2BM = BD (vì BD = BM + MD và BM = MD)
=> AB + BC > 2BM
d) Ta có: AB < BC (6 cm < 10cm)
Mà AB = CD
=> CD > BC => \(\widehat{MBC}< \widehat{D}\) (quan hệ giữa cạnh và góc đối diện)
Mà \(\widehat{D}=\widehat{ABM}\) (vì t/giác ABM = t/giác CDM)
=> \(\widehat{CBM}< \widehat{ABM}\)
Cho tam giác ABC vuông tại A có AB<AC,đường trung tuyến AM. Trên tia đối của tia AM lấy điểm D sao cho M là trung điểm AD.
a) chứng minh tam giác MAB= tam giác MDC và DC song song với AB
b) gọi K là trung điểm AC. Chứng minh tam giác BKD cân
c) DK cắt BC tại O. Chứng minh CO=2/3CM
d) BK cắt AD tại N. Chứng minh MK vuông góc với NO
Bài 2. Cho tam giác ABC vuông tại A, M là trung điểm của AC . Trên tia đối của tia MB lấy điểm D sao cho MB = MD . Đường thẳng qua B song song với AC cắt tia DC tại điểm E.
a. Chứng minh: góc ABM = góc CDM
b. Chứng minh: AB = CD và AC vuông góc DE
c. Chứng minh: C là trung điểm của DE
a: Xét tứ giác ABCD có
M là trung điểm chung của AC và BD
nên ABCD là hình bình hành
=>AB//CD
=>góc ABM=góc CDM
b: Vì ABCD là hình bình hành
nên AB=CD
AB//CD
AB vuông góc với AC
Do đó: CD vuông góc với AC
=>AC vuông góc với DE
c: Xét tứ giác ABEC có
CE//AB
BE//AC
Do đó: ABEC là hình bình hành
=>CE=AB=CD
=>C là trung điểm của ED
Cho tam giác ABC vuông tại A AB<AC tia Quân giác của góc b cắt AC tại M trên tia đối MB lấy điểm D sao cho MB=MD từ điểm D vẽ đường thẳng vuông góc với AC tại N và cắt BC tại E. a, CM tam giác ABM=NDM b, CM BE=DE. c, CMR MN<M
a) Xét tam giác \(ABM\) và tam giác \(NDM\):
\(\widehat{BAM}=\widehat{DNM}\left(=90^o\right)\)
\(MB=MD\)
\(\widehat{AMB}=\widehat{NMD}\)
Suy ra \(\Delta ABM=\Delta NDM\) (cạnh huyền - góc nhọn)
b) \(\Delta ABM=\Delta NDM\) suy ra \(\widehat{ABM}=\widehat{NDM}\)
mà \(\widehat{ABM}=\widehat{EBM}\).
suy ra \(\widehat{NDM}=\widehat{EBM}\) suy ra tam giác \(EBD\) cân tại \(E\)
suy ra \(BE=DE\).
Cho tam giác ABC vuông tại A có AB= 12cm; BC= 20cm. BM là đường trung tuyến. Trên tia đối của tia MB lấy điểm D sao cho MD = MB
a) Tính AC
b) CM: AB = CD; AC vuông góc với CD
c) CM: góc ABM > góc CBM