Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
1 tháng 7 2019 lúc 7:01

a, AB = 7,5cm, AC = 10cm, BC = 12,5cm, HC = 8cm

b, AH = 3 3 cm;  P A B C = 18 + 6 3 c m ;  P A B H = 9 + 3 3 c m ;  P A C H = 9 + 9 3 c m

Kon Kon
Xem chi tiết
nngoc
Xem chi tiết
Nguyễn Lê Phước Thịnh
28 tháng 7 2021 lúc 0:39

Bài 5: 

a) Xét ΔABC vuông tại A có 

\(AC=AB\cdot\cot\widehat{C}\)

\(=21\cdot\cot40^0\)

\(\simeq25,03\left(cm\right)\)

b) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=21^2+25,03^2=1067,5009\)

hay \(BC\simeq32,67\left(cm\right)\)

Nguyễn Hà Thảo
Xem chi tiết
Nguyễn Hoàng Minh
19 tháng 9 2021 lúc 10:10

\(1,\)

\(a,\) Áp dụng HTL tam giác

\(\left\{{}\begin{matrix}AH^2=CH\cdot BH\\AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}BH=\dfrac{AH^2}{CH}=\dfrac{25}{6}\left(cm\right)\\AB=\sqrt{\dfrac{25}{6}\left(\dfrac{25}{6}+6\right)}=\dfrac{5\sqrt{61}}{6}\left(cm\right)\\AC=\sqrt{6\left(\dfrac{25}{6}+6\right)}=\sqrt{61}\left(cm\right)\end{matrix}\right.\\ BC=\dfrac{25}{6}+6=\dfrac{61}{6}\left(cm\right)\)

\(b,S_{ABC}=\dfrac{1}{2}AH\cdot BC=\dfrac{1}{2}\cdot5\cdot\dfrac{61}{6}=\dfrac{305}{12}\left(cm^2\right)\)

Phạm Diệu Linh
Xem chi tiết
Văn Thị Kim Thoa
Xem chi tiết
Nguyễn Thị Minh Huyền 30...
Xem chi tiết
tam mai
13 tháng 7 2019 lúc 21:44

AB=căn 4,5^2+6^2=7.5

tam mai
13 tháng 7 2019 lúc 21:46

B, AH= căn 6^2-3^2=3 căn 3

mình tên gì :)?
Xem chi tiết
Nguyễn Hoàng Minh
17 tháng 9 2021 lúc 21:19

\(a,\) Áp dụng HTL tam giác

\(\left\{{}\begin{matrix}AH^2=BH\cdot HC\\AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}CH=\dfrac{AH^2}{BH}=\dfrac{36}{4,5}=8\left(cm\right)\\AB=\sqrt{4,5\left(4,5+8\right)}=\sqrt{4,5\cdot12,5}=7,5\left(cm\right)\\AC=\sqrt{8\cdot12,5}=10\left(cm\right)\end{matrix}\right.\)

và \(BC=12,5\left(cm\right)\)

\(b,\) Áp dụng HTL tam giác

\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\\AH^2=CH\cdot BH\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}BC=\dfrac{AB^2}{BH}=\dfrac{36}{3}=12\left(cm\right)\\CH=\dfrac{AC^2}{BC}=\dfrac{BC^2-AB^2}{12}=\dfrac{6\sqrt{3}}{12}=\dfrac{\sqrt{3}}{2}\left(cm\right)\\AH=3\cdot\dfrac{\sqrt{3}}{2}=\dfrac{3\sqrt{3}}{2}\left(cm\right)\end{matrix}\right.\)

pham thi thu thao
Xem chi tiết
Không Tên
11 tháng 2 2018 lúc 8:31

Ap dụng định lý Pytago ta có:

        \(BC^2=AB^2+AC^2\)

\(\Leftrightarrow\)\(BC^2=6^2+8^2=100\)

\(\Leftrightarrow\)\(BC=\sqrt{100}=10\)

tth_new
14 tháng 2 2018 lúc 14:53

Ta có hình vẽ:  A H B C

 Áp dụng định lý Pitago. Ta có:

BC2 = AB2 + AC2 <=> 62 + 82 = 100 cm2

100 = 10 x 10

=> BC = 10 cm

 Áp dụng công thức Heron để tính chiều cao. Ta có:

  \(S=\sqrt{p\left(p-a\right)\left(p-b\right)\left(p-c\right)}\)  (p là chu vi, S là diện tích, a,b,c là độ dài 3 cạnh)

  Ta có: Chu vi tam giác là: 6 + 8 + 10 =24 cm

Vậy \(S=\sqrt{24\left(24-6\right)\left(24-8\right)\left(24-10\right)}=48\sqrt{42}\)

   Để tính chiều cao AH, ta lấy 2 lần diện tích chia cho đáy ( BC) sẽ có được chiều cao

2 lần diện tích là: \(48\sqrt{42}.2=96\sqrt{42}\)

\(\Rightarrow AH=96\sqrt{42}:10=\frac{24\sqrt{42}}{25}\)

 Độ dài cạnh BH là:  (Bạn tự làm)

Độ dài cạnh HC là: (Bạn tự làm nhé)

Hoàng Khải Huân
9 tháng 5 2018 lúc 20:12

dfaishfdkasjnMajka  ưi