Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
nguyen thanh thao
Xem chi tiết
Yuu Hà
Xem chi tiết
Nguyễn Lê Phước Thịnh
30 tháng 6 2022 lúc 13:56

a: Xét ΔBAD vuông tại A và ΔBED vuông tại E có

BD chung

góc ABD=góc EBD

Do đó: ΔBAD=ΔBED
Suy ra: DA=DE

b: Ta có: BA=BE

DA=DE

Do đó: BD là đường trung trực của AE

nguyễn thị mỹ duyên
Xem chi tiết
Pham Dinh Duy
Xem chi tiết
Tran  Hoang Phu
Xem chi tiết
Trang Nguyễn
12 tháng 6 2021 lúc 10:51

H A B K C M I

a, Xét \(\Delta AHM\) và \(\Delta AKM\) có:

\(\widehat{AHM}=\widehat{AKM}=90^o\)

AM cạnh chung

\(\widehat{HAM}=\widehat{KAM}\) (vì AM là tia phân giác của \(\widehat{HAK}\))

\(\Rightarrow\Delta AHM=\Delta AKM\) (cạnh huyền - góc nhọn)

`=> AH = AK` (2 cạnh tương ứng)  (1)

Ta có: \(\widehat{AMK}+\widehat{KAM}=90^o\) (vì \(\Delta AKM\) vuông tại K)

          \(\widehat{KAM}+\widehat{BAM}=90^o\)

\(\Rightarrow\widehat{AMK}=\widehat{BAM}\)

Mà \(\widehat{AMK}=\widehat{AMB}\) (vì \(\Delta AHM=\Delta AKM\))

\(\Rightarrow\widehat{BAM}=\widehat{AMB}\)

\(\Rightarrow\Delta ABM\) cân tại B \(\Rightarrow AB=BM\)  (2)

Từ (1), (2) ta có đpcm

b, Xét \(\Delta HIM\) và \(\Delta CKM\) có:

\(\widehat{HMI}=\widehat{CMK}\) (2 góc đối đỉnh)

HM = KM (vì \(\Delta AHM=\Delta AKM\))

\(\widehat{IHM}=\widehat{CKM}\left(=90^o\right)\)

\(\Rightarrow\Delta HIM=\Delta KCM\left(g.c.g\right)\)

`=> HI = CK` (2 cạnh tương ứng)

Mà AH = AK (cmt)

`=> AH + HI = AK + CK`

`=> AI = AC`

\(\Rightarrow\Delta ACI\) cân tại A

AM là đường phân giác của \(\Delta ACI\) cân tại A

`=> AM` cũng là đường cao

\(\Rightarrow AM\perp CI\)     (3)

Vì AH = AK nên \(\Delta AHK\) cân tại A

\(\Rightarrow\widehat{AHK}=\dfrac{180^o-\widehat{CAI}}{2}\)  

\(\Delta ACI\) cân tại A \(\Rightarrow\widehat{AIC}=\dfrac{180^o-\widehat{CAI}}{2}\)

\(\Rightarrow\widehat{AHK}=\widehat{AIC}\)

Mà 2 góc này ở vị trí đồng vị

`=>` HK // CI  (4)

Từ (3), (4) ta có đpcm

thai le
Xem chi tiết
Nguyễn Nguyệt Hằng
17 tháng 4 2017 lúc 21:52

B A C E F D

a.Xét \(\Delta ABD\)\(\Delta EBD\) có:

\(\widehat{ABD}=\widehat{EBD}\) ( giả thiết)

BD - cạnh chung

\(\widehat{BAD}=\widehat{BED}\) ( = 90 do)

\(\Rightarrow\Delta ABD=\Delta EBD\left(c.h-g.n\right)\)

\(\Rightarrow AB=EB\) ( 2 cạnh tương ứng)

b.Xét \(\Delta ADF\)\(\Delta EDC\) có:

\(\widehat{ADF}=\widehat{EDC}\) ( đối đỉnh)

AD = ED ( vi \(\Delta ABD=\Delta EBD\) )

\(\widehat{DAF}=\widehat{DEC}\) ( = 90 do)

\(\Rightarrow\Delta ADF=\Delta EDC\left(g.c.g\right)\)

=> DF = DC ( 2 cạnh tương ứng)

=> \(\Delta FDC\) cân tại D

c.Ta có:AB = EB (cm a)

=> \(\Delta ABE\) cân tại B

Mà BD là đường phân giác \(\widehat{ABE}\)

=> BD là đường trung trực của \(\Delta ABE\)

=> \(BD\perp AE\) (1)

Lại có: \(\Delta ADF=\Delta EDC\) ( cm b )

=>AF = EC ( 2 cạnh tương ứng)

Mà AB = BE => AB+AF=BE+EC

=> BF = BC. => \(\Delta BFC\) cân tại B

Mà BD là đường phân giác \(\widehat{ABC}\) hay \(\widehat{FBC}\)

=> BD là đường trung trực của \(\Delta FBC\)

=> \(BD\perp FC\) (2)

Từ (1),(2) => AE// FC ( dpcm)

thai le
17 tháng 4 2017 lúc 21:11

tra loi jup minh cau hoi

Nguyễn Thị Ngọc Thơ
17 tháng 4 2017 lúc 21:27

Bài này cũng dễ thôi !

Hình bạn tự vẽ nha

Chứng minh

a, Xét \(\Delta BAD\)\(\Delta BED\)

BD chung

\(\widehat{ABD}=\widehat{EBD}\) ( gt )

\(\widehat{BAD}=\widehat{BED}\) (= 1v )

\(\Rightarrow\Delta BAD=\Delta BED\) (ch - gn )

\(\Rightarrow BA=BE\)

b, \(\Delta BAD=\Delta BED\) (câu a )

\(\Rightarrow AD=DE\)

Xét \(\Delta DAF\)\(\Delta DEC\) có :

AD = DE (c/m trên )

\(\widehat{ADF}=\widehat{EDC}\) (đối đỉnh )

\(\widehat{DAF}=\widehat{DEC}\) (= 1v )

\(\Rightarrow\Delta DAF=\Delta DEC\) ( g.c.g)

\(\Rightarrow DF=DC\)

\(\Rightarrow\Delta CDF\) cân tại D

dang quoc huy
Xem chi tiết
trần văn quyết
Xem chi tiết
Minh Châu Nguyễn
Xem chi tiết
Kim Quyên Trần
6 tháng 11 2016 lúc 7:32

Mk chỉ biết lm câu a thuj nka, mk ko học giỏi toán nên có j sai thì xin lỗi bn nka! :)))

a) Xét t.g BAD và t.g BED

Ta có:  Góc A = Góc B = 90*( gt )

           BD là cạnh chung

           B1 = B2 ( BD là tia phân giác của góc B)

=> T.g BAD = T.g BED ( g.c.g )