Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lan Anh Phạm
Xem chi tiết
Tran Le Khanh Linh
27 tháng 3 2020 lúc 20:30

C A B H M

a) Xét ∆CMA và ∆ CMB có:

AC=BC (∆ABC cân tại C)

\(\widehat{CAM}=\widehat{CBM}=90^o\)

CM chung

=> ∆CMA = ∆CMB (ch-gn)

b) Vì ∆CMA=∆CMB => \(\widehat{ACM}=\widehat{BCM}\)(2 góc tương ứng)

=> CH là phân giác \(\widehat{ACB}\)

∆ACB cân tại C => CH cũng là trung tuyến

=> AH=BH

c) Ta có: \(\widehat{CBA}=\frac{180^o-\widehat{ACB}}{2}=\frac{180^o-120^o}{2}=\frac{60^o}{2}=30^o\)

Mà \(\widehat{CBA}+\widehat{ABM}=90^o\)

=> \(\widehat{AMB}=90^o-\widehat{CBA}=90^o-30^o=60^o\)

∆CMA =∆CMB => AM=MB => ∆AMB cân tại M

=> ∆AMB là ∆ đều

Khách vãng lai đã xóa
Vy nguyễn
Xem chi tiết
Pé Jin
29 tháng 5 2016 lúc 19:54

Câu a chứng minh cái gì?

Câu c: Khi ABC=1200 là sao?

Nguyễn Phi Cường
29 tháng 5 2016 lúc 21:31

câu a chứng minh gìb

Vy nguyễn
Xem chi tiết
nguyen vũ thư
Xem chi tiết
TRẦN BÍCH TRUYỀN
30 tháng 4 2020 lúc 11:02

a) Xét 2 tam giác vuông CAM và CBM có:

           CM: cạnh chung

           CA = CB ( Vì tam giác ABC cân tại C)

Do đó tam giác CAM=CBM ( cạnh huyền- cạnh góc vuông)

b) Xét tam giác CHA và CHB có:

\(\widehat{ACH}\)=\(\widehat{BCH}\)( Vì \(\Delta CAM=\Delta CBM\))

CA = CB ( Do tam giác ABC cân tại C)

\(\widehat{CAH}=\widehat{CBH}\)( Do tam giác ABC cân tại C )

Do đó tam giác CHA= CHB (g-c-g)

=> HA= HB ( 2 cạnh tương ứng)

c) Ta có tam giác CAM= CBM

=> AM= BM ( 2 cạnh tương ứng )

=> tam giác AMB cân tại M

Tam giác ABC có \(\widehat{ACB}=120^O\)

=> \(\widehat{CAB}=\frac{180^0-120^0}{2}=30^O\)

=> \(\widehat{MAB}=90^0-\widehat{CAB}=90^0-30^0=60^0\)

\(\Delta MAB\)cân tại M có \(\widehat{MAB}=60^0\)

Do đó tam giác MAB là tam giác đều khi \(\widehat{ACB}=120^0\)

 

           

Khách vãng lai đã xóa
Nguyễn Thị Thu Phương
Xem chi tiết
Nguyễn Khôi  Nguyên
Xem chi tiết
Yen Nhi
1 tháng 5 2021 lúc 18:53

* Mình chỉ biết làm a) và b) thôi, cậu thông cảm. Hình tự vẽ nhé *

a) Vì AM vuông góc với AC => CAM = 90 độ

        BM vuông góc với BC => CBM = 90 độ

Xét tam giác CMA và tam giác CMB, ta có:

+) CAM = CBM ( cmt )

+) AC = BC ( tam giác ABC cân tại C )

-> CM chung

=> Tam giác CMA = tam giác CMB ( cạnh huyền - cạnh góc vuông )

b) Vì tam giác CMA = tam giác CMB ( cmt )

=> ACH = BCH

Xét tam giác ACH và tam giác BCH, ta có:

+) AC = BC

+) ACH = BCH

-> CH chung

=> Tam giác ACH = tam giác BCH ( c.g.c )

=> AH = BH

Khách vãng lai đã xóa
Nguyễn Khôi  Nguyên
1 tháng 5 2021 lúc 20:14

thk anyways

Khách vãng lai đã xóa
Bích Lệ
Xem chi tiết
Nguyễn Lê Phước Thịnh
21 tháng 3 2021 lúc 21:50

a) Xét ΔABH vuông tại H và ΔACH vuông tại H có 

AB=AC(ΔABC cân tại A)

AH chung

Do đó: ΔABH=ΔACH(Cạnh huyền-cạnh góc vuông)

Suy ra: BH=CH(Hai cạnh tương ứng)

bii nguyen
Xem chi tiết
Nguyễn Bảo Anh
18 tháng 3 2022 lúc 15:05

sao nhiều bạn biết làm mà không giúp bạn này z
chắc bạn ấy đang cần gấp lắm á, giúp bạn ấy di nào!!!

Khách vãng lai đã xóa
Quảng Nguyễn
18 tháng 3 2022 lúc 20:09

a) Xét ∆ABD và ∆ACD, ta có
AB=AC(GT)
<ABD=<ACD=90°
AD cạnh chung
⟹ ∆ABD=∆ACD(c.h-cgv) ⟹<BAD=<CAD( 2 góc tương ứng)
Xét ∆ABC và ∆ACD, ta có:
AB=AC(GT)
<BAD=<CAD(CMT)
AC cạnh chung
⟹ ∆ABC=∆ACD (c.g.c)
b) Ta có : BD=DC(Vì ∆ABD=∆ACD (CM ở a)) <1>
                BC=DC( Vì ∆ABC=∆ACD(CM ở a)) <2>
Từ <1> và <2> 
⟹ BD=DC=BC
⟹ ∆BDC là tam giác đều
c) Ta có: AD>BD(Vì AD là cạnh huyền tương ứng của tam giác vuông ABD)
               BC=BD( Vì ∆BDC là tam giác đều (CM ở b))⟹2BC>BD
⟹ 2BC=+AD>AB+BD

Đào Thị Thúy Vân
Xem chi tiết