a) Xét ΔABH vuông tại H và ΔACH vuông tại H có
AB=AC(ΔABC cân tại A)
AH chung
Do đó: ΔABH=ΔACH(Cạnh huyền-cạnh góc vuông)
Suy ra: BH=CH(Hai cạnh tương ứng)
a) Xét ΔABH vuông tại H và ΔACH vuông tại H có
AB=AC(ΔABC cân tại A)
AH chung
Do đó: ΔABH=ΔACH(Cạnh huyền-cạnh góc vuông)
Suy ra: BH=CH(Hai cạnh tương ứng)
1. Cho tam giác ABC cân tại A. kẻ AH vuông góc với BC (H thuộc BC)
a) Cm: HB=HC
b) Cm: AH là tia phân giác của góc BAC
c) Kẻ Bx vuông góc với BA, Cy vuông góc với CA. gọi K là giao điểm của hai tia Bx và Cy. Cm tam giác KBC cân tại K
2. Cho tam giác ABC cân tại A. Tia phân giác của góc A cắt BC tại H
a) Cm: tam giác AHB= tam giác AHC
b) Cm: AH vuông góc với BC
c) Cho AB=13cm, BC=10cm. Tính AC
Giúp mik với, mik cảm ơn!
Cho tam giác ABC cân tại A, có góc A nhọn. Vẽ AH vuông góc với BC tại H.
a) CM: tam giác ABH = tam giác ACH.
b) Vẽ đường trung tuyến BK của tam giác ABC cắt AH tại O. Qua H kẻ đường thẳng song song với AC, đường thẳng này cắt AB tại I. CM: tam giác HAI cân và ba điểm C, O, I thẳng hàng.
c) CM: AH > CH.
Cho tam giác ABC cân tại A (góc A < 90°). Vẽ AH vuông góc BC tại H
A) cm rằng : tam giác ABH = tam giác ACH rồi suy ra AH là tia phân giác góc A
B) từ H vẽ HE vuông góc AB tại E, HF vuông góc AC tại F .Cm rằng tam giác EAH = tam giác FAH rồi suy ra tam giác HEF là tam giác cân .
C) Đường thẳng vuông góc với AC tại C cắt tia AH tại K. Cm rằng EH // BK
D) Qua A vẽ đường thẳng song song với BC cắt tia HF tại N. Trên tia HE lấy điểm M sao cho HM =HN. Chứng minh rằng M,A,N thẳng hàng
Nhớ vẽ hình nha
Cho tam giác ABC có AB < AC. Từ trung điểm D của BC vẽ đường vuông góc với tia phân giác của góc A tại H. đường thẳng này cắt tia AB tại E và cắt AC tại F. Vẽ tia BM song song với EF ( M thuộc AC )
a, CM: tam giác ABM cân
b, CM: MF=BE=CF
c, Qua D vẽ đường thẳng vuông góc với BC cắt tia AH tại I. CMR IF vuông góc với AC
Ai làm nhanh nhất mjk tick cho.
Cho tam giác cân ABC co AB=AC=5cm, BC=8cm. Kẻ AH vuông góc với BC ( H thuộc BC)
a) CM: HB=Hc và <CAH=<BAH
b) Tính độ dài AH
c) Kẻ HD vuông góc với AB(D thuộc AB), kẻ HE vuông góc với AC(E thuộc AC). CM ĐE//BC
đ) Từ B và C kẻ các đường thẳng vuông góc với AB và AC. Hai đường thẳng này cắt nhau tại K chứng minh ba điểm A,H,K thẳng hàng.
Cho tam giác ABC có AB<AC. Từ trung điểm D của BC vẽ đường thẳng vuông góc với tia phân giác của góc A tại H. Đường thẳng này cắt tia AB tại E và cắt AC tại F. Vẽ BM//EF a, C/m ABM là tam giác cân b, C/m MF=BE=CF c, Qua D vẽ đường vuông góc với BC cắt tia AH tại I. C/m IF vuông góc với AC
cho tam giác ABC cân tại A (AB >AC) H là trung điểm của BC. a) Cm rằng :AH là phân giác của BAC b) Tính độ dài AH nếu BC = 4cm ,AB=cm c) Tia phân giác của góc B cắt AH tại M. CM :tam giác BMC cân d) Đường thẳng đi qua A và song song với BC cắt BM tại N. CM :AB=AN e) Kẻ MK vuông góc AC tại K. CM: MH=MK f) CM: MC vuông góc với NC
Cho tam giác ABC có AB<AC.Từ điểm D là trung điểm của BC vẽ đường vuông góc với tia phân giác của góc A tại H.Đường thẳng này cắt tia AB tại E và cắt AC tại F . Vẽ tia BMsong song với EF(M thuộc AC)
a)CM: tam giác ABM cân
b)CM:MF=BE=CF
c)Qua D kẻ đường thẳng vuông góc với BC cắt tai AM tại I CMR: IF vuông góc AC
cho tam giác abc cân tại a,Qua b kẻ đường thẳng vuông góc với ab qua c ẻ đường thẳng vuông góc ac cắt nhau ở d
a, cm tâm giác bdc cân
b, ad là tia phân giác góc a và da là tia phân giác góc d
c,ad vuông góc với bc và ad đi qua trung điểm của bc