Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
san dạdy
Xem chi tiết
Lấp La Lấp Lánh
15 tháng 9 2021 lúc 19:43

1) \(M=9x^2-6x+6=\left(9x^2-6x+1\right)+5=\left(3x-1\right)^2+5\ge5\)

\(minM=5\Leftrightarrow x=\dfrac{1}{3}\)

2) \(M=5-2x-x^2=-\left(x^2+2x+1\right)+6=-\left(x+1\right)^2+6\le6\)

\(maxM=6\Leftrightarrow x=-1\)

3) \(N=5+6x-9x^2=-\left(9x^2-6x+1\right)+6=-\left(3x-1\right)^2+6\le6\)

\(maxN=6\Leftrightarrow x=\dfrac{1}{3}\)

Nguyễn Tấn Đông
Xem chi tiết
D-low_Beatbox
7 tháng 4 2021 lúc 11:39

undefined

Soái muội
Xem chi tiết
Minh Nguyen
17 tháng 2 2020 lúc 15:00

Ta có : \(C=\frac{2}{6x-5-9x^2}\)

\(\Leftrightarrow C=-\frac{2}{9x^2-6x+5}\)

\(\Leftrightarrow C=-\frac{2}{\left(3x-1\right)^2+4}\)

Để C đạt giá trị nhỏ nhất

\(\Leftrightarrow\left(3x-1\right)^2+4\)đạt giá trị nhỏ nhất

Ta có : \(\left(3x-1\right)^2+4\ge4\)

Dấu " = " xảy ra : 

\(\Leftrightarrow3x-1=0\)

\(\Leftrightarrow x=\frac{1}{3}\)

Vậy \(Min_C=-\frac{1}{2}\Leftrightarrow x=\frac{1}{3}\)

Khách vãng lai đã xóa
nguyenmanhhung
27 tháng 6 2020 lúc 20:49

Một mảnh đất hình vuông có cạnh dài 12m. Người ta chia mảnh đất thành hai hình chữ nhật để làm sân và xây nhà. Diện tích làng Sơn chiếm 1/3 diện tích mảnh đất. Tính chu vi và diện tích phần đất để xây nhà?

Khách vãng lai đã xóa
Nguyễn Minh Đăng
27 tháng 6 2020 lúc 21:01

Bài làm:

\(C=\frac{2}{6x-5-9x^2}=-\frac{2}{9x^2-6x+5}=-\frac{2}{\left(9x^2-6x+1\right)+4}=-\frac{2}{\left(3x-1\right)^2+4}\)

Mà ta có: \(\left(3x-1\right)^2\ge0\left(\forall x\right)\Rightarrow\left(3x-1\right)^2+4\ge4\left(\forall x\right)\Rightarrow\frac{2}{\left(3x-1\right)^2+4}\le\frac{2}{4}=\frac{1}{2}\left(\forall x\right)\)

\(\Rightarrow-\frac{2}{\left(3x-1\right)^2+4}\ge-\frac{1}{2}\left(\forall x\right)\)

Dấu "=" xảy ra khi: \(\left(3x-1\right)^2=0\Rightarrow x=\frac{1}{3}\)

Vậy \(Max\left(C\right)=-\frac{1}{2}\Leftrightarrow x=\frac{1}{3}\)

Khách vãng lai đã xóa
loi diem
Xem chi tiết
Yêu Toán
7 tháng 4 2016 lúc 22:16

xét 6x - 5 - 9x= -( 9x-6x +1)+1-5= -(3x -1 )2 -4\(\le-4\)

\(\rightarrow\)\(\frac{2}{6x-5-9x^2}\ge\frac{2}{-4}=\frac{-1}{2}\)

Dấu đẳng thức xảy ra \(\Leftrightarrow3x=1\Leftrightarrow x=\frac{1}{3}\)

Vậy Amin=-0,5 khi x=1/3

loi diem
10 tháng 4 2016 lúc 20:49

cảm ơn bạn nhìu nhé!

Linh Nguyễn
Xem chi tiết
Akai Haruma
30 tháng 4 2023 lúc 11:52

Lời giải:
$A=(9x^2-6xy+y^2)+5y^2-6x-6y+20$

$=(3x-y)^2-2(3x-y)+4y^2-8y+20$

$=(3x-y)^2-2(3x-y)+1+(4y^2-8y+4)+15$

$=(3x-y-1)^2+(2y-2)^2+15\geq 15$

Vậy $A_{\min}=15$.

Giá trị này đạt tại $3x-y-1=2y-2=0$

$\Leftrightarrow (x,y)=(\frac{2}{3},1)$

Pose Black
Xem chi tiết
HT.Phong (9A5)
21 tháng 7 2023 lúc 8:10

\(A=\sqrt{1-6x+9x^2}+\sqrt{9x^2-12x+4}\)

\(A=\sqrt{1^2-2\cdot3x\cdot1+\left(3x\right)^2}+\sqrt{\left(3x\right)^2-2\cdot2\cdot3x+2^2}\)

\(A=\sqrt{\left(1-3x\right)^2}+\sqrt{\left(3x-2\right)^2}\)

\(A=\left|1-3x\right|+\left|3x-2\right|\)

\(A=\left|1-3x+3x-2\right|\)

\(A=\left|-1\right|=1\)

Dấu "=" xảy ra \(\left(1-3x\right)\left(3x-2\right)\ge0\)

\(\Rightarrow\dfrac{1}{3}\le x\le\dfrac{2}{3}\)

Vậy: \(A_{min}=1\) khi \(\dfrac{1}{3}\le x\le\dfrac{2}{3}\)

Mi Trần
Xem chi tiết
Hoàng Lê Bảo Ngọc
25 tháng 7 2016 lúc 8:33

a) Đặt \(A=\frac{2}{6x-9x^2-21}\).  A đạt giá trị nhỏ nhất khi \(\frac{1}{A}\)đạt giá trị lớn nhất.

Ta có : \(\frac{1}{A}=\frac{-9x^2+6x-21}{20}=-\frac{9}{20}\left(x-\frac{1}{3}\right)^2-1\le-1\)

Vậy \(Max\left(\frac{1}{A}\right)=-1\Leftrightarrow x=\frac{1}{3}\)

=> \(MinA=-1\Leftrightarrow x=\frac{1}{3}\)

b) Đặt \(B=\left(x-1\right)\left(x-2\right)\left(x-5\right)\left(x-6\right)\)

Ta có ; \(B=\left[\left(x-1\right)\left(x-6\right)\right].\left[\left(x-2\right)\left(x-5\right)\right]=\left(x^2-7x+6\right)\left(x^2-7x+10\right)\)

Đặt \(y=x^2-7x+8\) \(\Rightarrow B=\left(y+2\right)\left(y-2\right)=y^2-4\ge-4\)

Min B = -4 khi và chỉ khi  \(x^2-7x+8=0\Leftrightarrow\orbr{\begin{cases}x=\frac{7+\sqrt{17}}{2}\\x=\frac{7-\sqrt{17}}{2}\end{cases}}\)

Trần Văn Thành
24 tháng 10 2016 lúc 18:57

chưa học hihi

Cô nàng Thiên Yết
Xem chi tiết
Edogawa Conan
25 tháng 3 2020 lúc 16:34

C = \(\frac{2}{6x-5-9x^2}=\frac{2}{-\left(9x^2-6x+1\right)-4}=\frac{2}{-\left(3x-1\right)^2-4}\ge-\frac{1}{2}\forall x\)

Dấu "=" xảy ra <=> 3x - 1 = 0 =<=> x = 1/3

Vậy MinC = -1/2 khi x = 1/3

M = \(\frac{3}{2x^2+2x+3}=\frac{3}{2\left(x^2+x+\frac{1}{4}\right)+\frac{5}{2}}=\frac{3}{2\left(x+\frac{1}{2}\right)^2+\frac{5}{2}}\le\frac{3}{\frac{5}{2}}=\frac{6}{5}\forall x\)

Dấu "=" xảy ra <=> x + 1/2= 0 <=> x = -1/2

Vậy MaxM = 6/5 khi x = -1/2

N = x  - x2 = -(x2 - x + 1/4) + 1/4 = -(x - 1/2)2 + 1/4 \(\le\)1/4 \(\forall\)x

Dấu "=" xảy ra <=> x - 1/2 = 0 <=> x = 1/2

Vậy MaxN = 1/4 khi x = 1/2

Khách vãng lai đã xóa
Cô nàng Thiên Yết
25 tháng 3 2020 lúc 16:45

Edogawa Conan giúp em luôn bài giá trị lớn nhất luôn được không ạ?

Khách vãng lai đã xóa
Truyen Vu Cong Thanh
Xem chi tiết