\(\dfrac{1}{2x3}\)+\(\dfrac{1}{1x2}\)+..................+\(\dfrac{1}{^{\text{64x65}}}\)
B= \(\dfrac{1}{1x2}\)+\(\dfrac{1}{2x3}\)+\(\dfrac{1}{3x4}\)+.....+\(\dfrac{1}{198x199}\)+\(\dfrac{1}{199x200}\)
\(B=\dfrac{1}{1\times2}+\dfrac{1}{2\times3}+...+\dfrac{1}{199\times200}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{199}-\dfrac{1}{200}\)
\(=1-\dfrac{1}{200}=\dfrac{199}{200}\)
Tính
D = \(\dfrac{1}{1x2}+\dfrac{1}{2x3}+\dfrac{1}{3x4}+....+\dfrac{1}{2022x2023}\)
\(\left(\dfrac{1}{1x2}+\dfrac{1}{2x3}+........+\dfrac{1}{8x9}+\dfrac{1}{9x10}\right)xX=\dfrac{3}{4}\)
\(\left(\dfrac{1}{1\times2}+\dfrac{1}{2\times3}+...+\dfrac{1}{9\times10}\right)\times x=\dfrac{3}{4}\)
\(\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{9}-\dfrac{1}{10}\right)\times x=\dfrac{3}{4}\)
\(\left(1-\dfrac{1}{10}\right)\times x=\dfrac{3}{4}\)
\(\dfrac{9}{10}\times x=\dfrac{3}{4}\)
\(x=\dfrac{3}{4}\times\dfrac{10}{9}\)
\(x=\dfrac{5}{6}\)
\(\dfrac{1}{1x2}\)+ \(\dfrac{1}{2x3}\) + \(\dfrac{1}{3x4}\) +...+ \(\dfrac{1}{98x99}\) + \(\dfrac{1}{99x100}\)
tính nhanh bài này
Đây là dạng tính nhanh tổng các phân số, trong đó mỗi phân số của tổng có tử số bằng hiệu hai thừa số dưới mẫu và mẫu thứ hai của thừa số này là mẫu số thứ nhất của phân số liền kề với nó. Em tách từng phân số thành hiệu hai phân số mà tử số là 1 còn mẫu số là mẫu hai mẫu số của phân số ban đầu. Triệt tiêu các hạng tử giống nhau ta được tổng cần tìm
Dưới đây là cách giải chi tiết em tham khảo nhé em.
A = \(\dfrac{1}{1\times2}\) + \(\dfrac{1}{2\times3}\) + \(\dfrac{1}{3\times4}\)+ .....+ \(\dfrac{1}{99\times100}\)
A = \(\dfrac{1}{1}\) - \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) - \(\dfrac{1}{3}\) + \(\dfrac{1}{3}\) - \(\dfrac{1}{4}\) +.....+ \(\dfrac{1}{99}\) - \(\dfrac{1}{100}\)
A = \(\dfrac{1}{1}\) - \(\dfrac{1}{100}\)
A = \(\dfrac{99}{100}\)
HD: \(\dfrac{1}{nx\left(n+1\right)}=\dfrac{1}{n}-\dfrac{1}{n+1}\)
A= \(1-\dfrac{1}{100}=\dfrac{99}{100}\)
\(\dfrac{1}{1x2}\)+\(\dfrac{1}{2x3}\)+\(\dfrac{1}{3x4}\)+......+\(\dfrac{1}{9x10}\)
Tính bằng cách nhanh nhất
\(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+...+\dfrac{1}{9\cdot10}=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{9}-\dfrac{1}{10}=1-\dfrac{1}{10}=\dfrac{9}{10}\)
\(\dfrac{1}{1\times2}+\dfrac{1}{2\times3}+\dfrac{1}{3\times4}+...+\dfrac{1}{9\times10}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{9}-\dfrac{1}{10}\)
\(=1-\dfrac{1}{10}=\dfrac{9}{10}\)
#kễnh
Tìm x biết:
\(\dfrac{x}{x+1}=\dfrac{1}{1x2}+\dfrac{1}{2x3}+\dfrac{1}{3x4}+...+\dfrac{1}{31x32}\)
Trả lời nhanh giúp mìn nhé
`x/(x+1)=1/(1xx2)+1/(2xx3)+1/(3xx4)+...+1/(31xx32)`
`=>x/(x+1)=1-1/2+1/2-1/3+1/3-1/4+...+1/31-1/32`
`=>x/(x+1)=1-1/32`
`=>x/(x+1)=31/32`
`=>32x=31(x+1)`
`=>32x=31x+31`
`=>32x-31x=31`
`=>x=31`
So sánh:
A=\(\dfrac{1}{1x2}\)+\(\dfrac{1}{2x3}\)+.....+\(\dfrac{1}{49x50}\) với 1
B=\(\dfrac{1}{2x4}\)+\(\dfrac{1}{4x6}\)+.....+\(\dfrac{1}{46x48}\) với \(\dfrac{1}{4}\)
C=\(\dfrac{1}{6}\)+\(\dfrac{1}{12}\)+.....+\(\dfrac{1}{110}\)+\(\dfrac{1}{122}\) với \(\dfrac{1}{2}\)
Giải tất cả các câu đầy đủ phép tính giúp mik nha. C.ơn
\(A=\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+...+\dfrac{1}{49\cdot50}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{49}-\dfrac{1}{50}\)
\(=\dfrac{49}{50}< 1\)
Tìm x:
(x -\(\dfrac{1}{3}\) ) x (\(\dfrac{2}{1x2}\)+ \(\dfrac{2}{2x3}\)+ \(\dfrac{2}{3x4}\) + … + \(\dfrac{2}{9x10}\)) = \(\dfrac{3}{4}\)
\(\Leftrightarrow2\left(x-\dfrac{1}{3}\right)\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{9}-\dfrac{1}{10}\right)=\dfrac{3}{4}\)
\(\Leftrightarrow2\left(x-\dfrac{1}{3}\right)\left(1-\dfrac{1}{10}\right)=\dfrac{3}{4}\Leftrightarrow\dfrac{9}{10}\left(x-\dfrac{1}{3}\right)=\dfrac{3}{8}\)
\(\Leftrightarrow x-\dfrac{1}{3}=\dfrac{5}{12}\Leftrightarrow x=\dfrac{5}{12}+\dfrac{1}{3}=\dfrac{9}{12}=\dfrac{3}{4}\)
1. Tính nhanh:
a. \(\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}+\dfrac{1}{6}+\dfrac{5}{12}+\dfrac{19}{30}\)
b. \(\dfrac{1}{1x2}+\dfrac{1}{2x3}+\dfrac{1}{3x4}+...+\dfrac{1}{1998x1999}+\dfrac{1}{1999x2000}\)
Đây là toán lớp 5 nhé!
a, \(\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}+\dfrac{1}{6}+\dfrac{5}{12}+\dfrac{19}{30}\)
\(=\left(\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{5}{12}\right)+\left(\dfrac{1}{5}+\dfrac{1}{6}+\dfrac{19}{30}\right)\)
\(=1+1=2\)
Chúc bạn học tốt!!!
\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+..+\dfrac{1}{1998.1999}+\dfrac{1}{1999.2000}\)
\(=\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{1998}-\dfrac{1}{1999}+\dfrac{1}{1999}-\dfrac{1}{2000}\)
\(=1-\dfrac{1}{2000}=\dfrac{1999}{2000}.\)
\(\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}+\dfrac{1}{6}+\dfrac{5}{12}+\dfrac{19}{30}\)
\(=\left(\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{5}{12}\right)+\left(\dfrac{1}{5}+\dfrac{1}{6}+\dfrac{19}{30}\right)\)
\(=\dfrac{12}{12}+\dfrac{30}{30}=1+1=2\)
\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+.....+\dfrac{1}{1998.1999}+\dfrac{1}{1999.2000}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+.....+\dfrac{1}{1998}-\dfrac{1}{1999}+\dfrac{1}{1999}+\dfrac{1}{2000}\)\(=1-\dfrac{1}{2000}=\dfrac{1999}{2000}\)