`f) (x^2 – 9)^2 – 9(x – 3)^2 = 0`
Giải pt
Giải PT: (x-3)/(x^2+4x+9) + 2 + (x^2+4x+9)/(x-3)=0
\(\frac{\left(x-3\right)}{x^2+4x+9}+2+\frac{x^2+4x+9}{x-3}=0\)
\(x^2+4x+9=\left(x+2\right)^2+5\ge5\)
x>3 hiển nhiên vô nghiệm
xét x<3
\(\frac{!\left(x-3\right)!}{x^2+4x+9}+\frac{x^2+4x+9}{!x-3!}\ge2\)
vậy pt chỉ nghiệm
khi \(\frac{!\left(x-3\right)!}{x^2+4x+9}=\frac{x^2+4x+9}{!x-3!}\Leftrightarrow x^2+4x+9=!x-3!\)
\(\Leftrightarrow x^2+5x+6=0\Rightarrow\)
25-24=1
=>
x=-3 loại
x=-2 nhận
Đk:....
Đặt \(\hept{\begin{cases}a=x-3\\b=x^2+4x+9\end{cases}}\) pt trở thành
\(\frac{a}{b}+2+\frac{b}{a}=0\)\(\Leftrightarrow\frac{a^2}{ab}+\frac{2ab}{ab}+\frac{b^2}{ab}=0\)
\(\Leftrightarrow\frac{a^2+2ab+b^2}{ab}=0\)\(\Leftrightarrow\left(a+b\right)^2=0\)
\(\Leftrightarrow a=-b\)\(\Leftrightarrow x-3=-\left(x^2+4x+9\right)\)
\(\Leftrightarrow x-3=-x^2-4x-9\)\(\Leftrightarrow x^2+5x+6=0\)
\(\Leftrightarrow\left(x+2\right)\left(x+3\right)=0\)\(\Leftrightarrow\orbr{\begin{cases}x=-2\\x=-3\end{cases}}\)
GIẢI HỆ PT: x-3y-3=0 và x^2+y^2-2x-2y-9=0
PT (1) <=> x = 3y + 3. Thay x = 3y + 3 vào PT (2) ta có: \(\left(3y+3\right)^2+y^2-2\left(3y+3\right)-2y-9=0\Leftrightarrow10y^2+10y-6=0\Leftrightarrow y=\frac{-5+\sqrt{85}}{10}\)hoặc \(y=\frac{-5-\sqrt{85}}{10}\)
- Nếu \(y=\frac{-5+\sqrt{85}}{10}\) \(\Rightarrow x=3y+3=\frac{15+3\sqrt{85}}{10}\)
- Nếu \(y=\frac{-5-\sqrt{85}}{10}\Rightarrow x=3y+3=\frac{15-3\sqrt{85}}{10}\)
Giải pt
√(x-2)(x-3) - √x^2-9 =0
Bài toán :
Lời giải:
Tập xác định của phương trình
Biến đổi vế trái của phương trình
Phương trình thu được sau khi biến đổi
Lời giải thu được
Giải PT ax+b=0 : (3x-1)^2-3(3x-2)=9(x+1)(x-3)
\(\left(3x-1\right)^2-3\left(3x-2\right)=9\left(x+1\right)\left(x-3\right)\)
\(\Leftrightarrow9x^2-6x+1-9x+6=9\left(x^2-2x-3\right)\)
\(\Leftrightarrow9x^2-15x+7=9x^2-18x-27\)
\(\Leftrightarrow-15x+18x+7+27=0\)
\(\Leftrightarrow3x+34=0\)
\(\Leftrightarrow x=\frac{-34}{3}\)
Vậy tập nghiệm của phương trình là : \(S=\left\{-\frac{34}{3}\right\}\)
Bài 6: Cho PT x² + mx + m+3=0.
c) Giải PT khi m -2.
d) Tìm m để PT có hai nghiệm phân biệt x, ,x, thỏa mãn x +x =9.
e) Tim m để PT có hai nghiệm phân biệt x, r, thỏa mãn 2x, +3x, = 5.
f) Tìm m để PT có nghiệm x, =-3. Tính nghiệm còn lại.
g) Tìm biểu thúức liên hệ giữa hai nghiệm phân biệt x,,x, không phụ thuộc vào m.
GIÚP MÌNH GẤP VỚI Ạ MÌNH ĐANG CẦN GẤP ;<
c: Thay m=-2 vào pt, ta được:
\(x^2-2x+1=0\)
hay x=1
f: Thay x=-3 vào pt, ta được:
\(9-3m+m+3=0\)
=>-2m+12=0
hay m=6
1. Giải pt:
\(\sqrt{x^2-4x+3}+\sqrt{x-1}=0\)0
2. Giải pt:
\(\sqrt{x^2-2x+1}-\sqrt{x^2-6x+9}=10\)
\(1)\) ĐKXĐ : \(x\ge3\)
\(\sqrt{x^2-4x+3}+\sqrt{x-1}=0\)
\(\Leftrightarrow\)\(\sqrt{\left(x^2-4x+4\right)-1}+\sqrt{x-1}=0\)
\(\Leftrightarrow\)\(\sqrt{\left(x-2\right)^2-1}+\sqrt{x-1}=0\)
\(\Leftrightarrow\)\(\sqrt{\left(x-2-1\right)\left(x-2+1\right)}+\sqrt{x-1}=0\)
\(\Leftrightarrow\)\(\sqrt{\left(x-3\right)\left(x-1\right)}+\sqrt{x-1}=0\)
\(\Leftrightarrow\)\(\sqrt{x-1}\left(\sqrt{x-3}+1\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}\sqrt{x-1}=0\\\sqrt{x-3}+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\\x\in\left\{\varnothing\right\}\end{cases}}}\)
Vậy \(x=1\)
\(2)\)\(\sqrt{x^2-2x+1}-\sqrt{x^2-6x+9}=10\)
\(\Leftrightarrow\)\(\sqrt{\left(x-1\right)^2}-\sqrt{\left(x-3\right)^2}=10\)
\(\Leftrightarrow\)\(\left|x-1\right|-\left|x-3\right|=10\)
+) Với \(\hept{\begin{cases}x-1\ge0\\x-3\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge1\\x\ge3\end{cases}\Leftrightarrow}x\ge3}\) ta có :
\(x-1-x+3=10\)
\(\Leftrightarrow\)\(0=8\) ( loại )
+) Với \(\hept{\begin{cases}x-1< 0\\x-3< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x< 1\\x< 3\end{cases}\Leftrightarrow}x< 1}\) ta có :
\(1-x+x-3=10\)
\(\Leftrightarrow\)\(0=12\) ( loại )
Vậy không có x thỏa mãn đề bài
Chúc bạn học tốt ~
PS : mới lp 8 sai đừng chửi nhé :v
giải pt tích sau : 1/9(x-3)^2 -1/25 (x+5)^2=0
giải chi tiết giúp mk với ạ
`1/9(x-3)^2-1/25(x+5)^2=0`
`<=>(1/3x-1)^2-(1/5x+1)^2=0`
`<=>(1/3x-1-1/5x-1)(1/3x-1+1/5x+1)=0`
`<=>(2/15x-2). 8/15x=0`
`<=>2/15x-2=0` hoặc `8/15x=0`
`<=>x=15` hoặc `x=0`
Vậy `S=`{`15;0`}
1) giải pt:
\(\sqrt{x-3}-2\sqrt{x^2-9}=0\)
giúp mk vs ạ mk cần gấp
ĐKXĐ: \(x\ge3\)
\(\Leftrightarrow\sqrt{x-3}=2\sqrt{x^2-9}\)
\(\Leftrightarrow x-3=4\left(x-3\right)\left(x+3\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\4\left(x+3\right)=1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-\dfrac{11}{4}\left(loại\right)\end{matrix}\right.\)
giải pt
\(\sqrt{x+3}-2\sqrt{x^2-9}=0\)
ĐK: \(\left[{}\begin{matrix}x\le-3\\x\ge3\end{matrix}\right.\)
\(\sqrt{x+3}-2\sqrt{x^2-9}=0\)
\(\Leftrightarrow\sqrt{x+3}-2\sqrt{x+3}\cdot\sqrt{x-3}=0\)
\(\Leftrightarrow\sqrt{x+3}\left(1-2\sqrt{x-3}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x+3}=0\\2\sqrt{x-3}=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x+3=0\\x-3=\frac{1}{4}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=\frac{13}{4}\end{matrix}\right.\)( thỏa )
Vậy....