Bài toán :
Lời giải:
Tập xác định của phương trình
Biến đổi vế trái của phương trình
Phương trình thu được sau khi biến đổi
Lời giải thu được
Tuyển Cộng tác viên Hoc24 nhiệm kì 28 tại đây: https://forms.gle/GrfwFgzveoKLVv3p6
Bài toán :
Lời giải:
Tập xác định của phương trình
Biến đổi vế trái của phương trình
Phương trình thu được sau khi biến đổi
Lời giải thu được
giải pt
\(\sqrt{x+3}-2\sqrt{x^2-9}=0\)
Giải hệ pt:
\(\left\{{}\begin{matrix}x^2+2y^2+3xy+3=0\\\dfrac{x-y+18}{\left(x+y\right)^2}=9\sqrt{x-y}\end{matrix}\right.\)
Giải pt
\(\frac{6}{x^2-9}+\frac{4}{x^2-11}-\frac{7}{x^2-8}-\frac{3}{x^2-12}=0\)
Giải pt: (x-1)^4 - 8(x-1)^2 - 9 =0
Giải pt:
\(x^{10}-x^6+x^2-2x+5=0\)
\(7x^8-x^5+x^2-x+3=0\)
Giải các PT sau: \(\sqrt{x+6-4\sqrt{x+2}}-\sqrt{9-4\sqrt{5}}=0\)
1.:Cho pt 2x2 - (6m-3)x -3m+1
a) Giải pt với m=1
b) Tìm m để A= x²1 +x2 2 đạt GTNN
2. Giải pt
✓3 .x^2 -2✓3 .x +12 =0
cho pt \(x^2+mx+n=0\) (1)
Giải pt khi m=3 và n=2
Xác định m, n biết pt (1)có hai nghiệm \(\left\{{}\begin{matrix}x_1-x_2=3\\x_1^3-x^3_2=9\end{matrix}\right.\)
a, tìm m để pt \(x^2+2x+m-3=0\) có 2 no phân biệt
b, giải pt: \(\sqrt{\left(9-4x\right)\left(x^2-6x+9\right)}=\left|-2x+5\right|\sqrt{9-4x}\)