Cho \(H=\dfrac{\sqrt{xy}}{x-\sqrt{xy}+y}\)( \(x>y\ge0\)). So sánh H với \(\sqrt{H}\)
Cho \(H=\dfrac{\sqrt{xy}}{x-\sqrt{xy}+y}\) \(\left(x>y\ge0\right)\). So sánh H với\(\sqrt{H}\)
Ta có
\(x+y\ge2\sqrt{xy}\\ \Leftrightarrow x+y\ge\sqrt{xy}+\sqrt{xy}\\ \Leftrightarrow x+y-\sqrt{xy}\ge\sqrt{xy}\\ \Rightarrow\dfrac{\sqrt{xy}}{yx-\sqrt{xy}+y}\)
Có mẫu luôn lớn hơn hoặc = tử số
Bằng khi x = y = 1
\(\Rightarrow H\le\sqrt{H};bằng.khi.x=y=1\)
Làm hộ mình câu c nha
Cho \(H=\left(\dfrac{x-y}{\sqrt{x}-\sqrt{y}}-\dfrac{\sqrt{x^3}-\sqrt{y^3}}{x-y}\right):\dfrac{\left(\sqrt{x}-\sqrt{y}\right)^2+\sqrt{xy}}{\sqrt{x}+\sqrt{y}}\).
a) Rút gọn H
b) Chứng minh \(H\ge0\)
c) So sánh H với \(\sqrt{H}\)
a) Rút gọn được \(\dfrac{\sqrt{xy}}{x-\sqrt{xy}+y}\)
c) \(H=\dfrac{\sqrt{xy}}{x-\sqrt{xy}+y}\Rightarrow H^2=\dfrac{xy}{\left(x-\sqrt{xy}+y\right)^2}\)
\(\Rightarrow H^2-H=\dfrac{xy}{\left(x-\sqrt{xy}+y\right)^2}-\dfrac{\sqrt{xy}}{x-\sqrt{xy}+y}=\dfrac{xy-\sqrt{xy}\left(x-\sqrt{xy}+y\right)}{\left(x-\sqrt{xy}+y\right)^2}\)
\(=\dfrac{2xy-x\sqrt{xy}-y\sqrt{xy}}{\left(x-\sqrt{xy}+y\right)^2}=\dfrac{-\sqrt{xy}\left(x-2\sqrt{xy}+y\right)}{\left(x-\sqrt{xy}+y\right)^2}=-\dfrac{\sqrt{xy}\left(\sqrt{x}-\sqrt{y}\right)^2}{\left(x-\sqrt{xy}+y\right)^2}\)
Do \(\left\{{}\begin{matrix}\sqrt{xy}\ge0\\\left(\sqrt{x}-\sqrt{y}\right)^2\ge0\\\left(x-\sqrt{xy}+y\right)^2\ge0\end{matrix}\right.\)
\(\Rightarrow H^2-H=-\dfrac{\sqrt{xy}\left(\sqrt{x}-\sqrt{y}\right)^2}{\left(x-\sqrt{xy}+y\right)^2}\le0\Rightarrow H^2\le H\)
Mà \(H\ge0\left(cmt\right)\Rightarrow H\le\sqrt{H}\)
Cho A = \(\dfrac{x+y-2\sqrt{xy}}{x-y}\left(x\ge0;y\ge0;x\ne y\right)\)
1) Chứng minh A = \(\dfrac{\sqrt{x}-\sqrt{y}}{\sqrt{x}+\sqrt{y}}\)
2) Tính A với x = \(3+2\sqrt{2}\) và y = \(3-2\sqrt{2}\)
LÀM CHI TIẾT GIÚP MK NHÉ!
1: \(A=\dfrac{x-2\sqrt{xy}+y}{x-y}=\dfrac{\left(\sqrt{x}-\sqrt{y}\right)^2}{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}=\dfrac{\sqrt{x}-\sqrt{y}}{\sqrt{x}+\sqrt{y}}\)
2: Thay \(x=3+2\sqrt{2}\) và \(y=3-2\sqrt{2}\) vào A, ta được:
\(A=\dfrac{\sqrt{2}+1-\sqrt{2}+1}{\sqrt{2}+1+\sqrt{2}-1}=\dfrac{2}{2\sqrt{2}}=\dfrac{\sqrt{2}}{2}\)
Cho biểu thức \(A=\left(\dfrac{x\sqrt{x}+y\sqrt{y}}{\sqrt{x}+\sqrt{y}}-\sqrt{xy}\right):\left(x-y\right)+\dfrac{2\sqrt{y}}{\sqrt{x}+\sqrt{y}};x\ge0,y\ge0,x\ne y\)
Chứng minh rằng giá trị của biểu thức A không phụ thuộc vào x, y
Ta có: \(A=\left(\dfrac{x\sqrt{x}+y\sqrt{y}}{\sqrt{x}+\sqrt{y}}-\sqrt{xy}\right):\left(x-y\right)+\dfrac{2\sqrt{y}}{\sqrt{x}+\sqrt{y}}\)
\(=\dfrac{\left(x-2\sqrt{xy}+y\right)}{x-y}+\dfrac{2\sqrt{y}}{\sqrt{x}+\sqrt{y}}\)
\(=\dfrac{\sqrt{x}-\sqrt{y}+2\sqrt{y}}{\sqrt{x}+\sqrt{y}}\)
=1
Rút gọn : a) \(\dfrac{a\sqrt{b}-b\sqrt{a}}{\sqrt{a}-\sqrt{b}}-\sqrt{ab}\)
b)\(\dfrac{x+4y-4\sqrt{xy}}{\sqrt{x}-2\sqrt{y}}+\dfrac{y+\sqrt{xy}}{\sqrt{x}+\sqrt{y}}\left(x\ge0;y\ge0;x\ne4y\right)\)
c)\(\dfrac{x+4\sqrt{x}+4}{\sqrt{x}+2}+\dfrac{4-x}{\sqrt{x}-2}\left(x\ge0;x\ne4\right)\)
d)\(\dfrac{9-x}{\sqrt{3x}+3}-\dfrac{9-6\sqrt{x}+x}{\sqrt{x}-3}\)
e)\(\dfrac{\left(\sqrt{x}-\sqrt{y}\right)^2+4\sqrt{xy}}{\sqrt{x}+\sqrt{y}}-\dfrac{x\sqrt{y}+y\sqrt{x}}{\sqrt{xy}}\)
g)\(\left(2-\dfrac{a-3\sqrt{a}}{\sqrt{a}-3}\right)\left(2-\dfrac{5\sqrt{a}-\sqrt{ab}}{\sqrt{b}-5}\right)với\) a, b \(\ge\)0 , a \(\ne\)9; b\(\ne\)25
Mọi người giúp tớ với , cảm ơn nhiều nhiều ạ !!
a: \(=\dfrac{\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)}{\sqrt{a}-\sqrt{b}}-\sqrt{ab}=\sqrt{ab}-\sqrt{ab}=0\)
b: \(=\dfrac{\left(\sqrt{x}-2\sqrt{y}\right)^2}{\sqrt{x}-2\sqrt{y}}+\dfrac{\sqrt{y}\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{x}+\sqrt{y}}\)
\(=\sqrt{x}-2\sqrt{y}+\sqrt{y}=\sqrt{x}-\sqrt{y}\)
c: \(=\sqrt{x}+2-\dfrac{x-4}{\sqrt{x}-2}\)
\(=\sqrt{x}+2-\sqrt{x}-2=0\)
Cho biểu thức B = \(\left(\dfrac{x-y}{\sqrt{x}-\sqrt{y}}+\dfrac{x\sqrt{x}-y\sqrt{y}}{y-x}\right):\dfrac{\left(\sqrt{x}-\sqrt{y}\right)^2+\sqrt{xy}}{\sqrt{x}+\sqrt{y}}\)
a) Rút gọn biểu thức B
b) Chứng minh \(B\ge0\)
a) \(B=\left(\dfrac{x-y}{\sqrt{x}-\sqrt{y}}+\dfrac{x\sqrt{x}-y\sqrt{y}}{y-x}\right):\dfrac{\left(\sqrt{x}-\sqrt{y}\right)^2+\sqrt{xy}}{\sqrt{x}+\sqrt{y}}\left(x,y\ge0;x\ne y\right)\)
\(B=\left[\dfrac{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{x}-\sqrt{y}}-\dfrac{\left(\sqrt{x}\right)^3-\left(\sqrt{y}\right)^3}{x-y}\right]:\dfrac{x-2\sqrt{xy}+y+\sqrt{xy}}{\sqrt{x}+\sqrt{y}}\)
\(B=\left[\left(\sqrt{x}+\sqrt{y}\right)-\dfrac{\left(\sqrt{x}-\sqrt{y}\right)\left(x+\sqrt{xy}+y\right)}{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}\right]:\dfrac{x+\sqrt{xy}+y}{\sqrt{x}+\sqrt{y}}\)
\(B=\left[\left(\sqrt{x}+\sqrt{y}\right)-\dfrac{x+\sqrt{xy}+y}{\sqrt{x}+\sqrt{y}}\right]:\dfrac{x+\sqrt{xy}+y}{\sqrt{x}+\sqrt{y}}\)
\(B=\dfrac{\left(\sqrt{x}+\sqrt{y}\right)^2-x-\sqrt{xy}-y}{\sqrt{x}+\sqrt{y}}\cdot\dfrac{\sqrt{x}+\sqrt{y}}{x+\sqrt{xy}+y}\)
\(B=\dfrac{x+2\sqrt{xy}+y-x-\sqrt{xy}-y}{\sqrt{x}+\sqrt{y}}\cdot\dfrac{\sqrt{x}+\sqrt{y}}{x+\sqrt{xy}+y}\)
\(B=\dfrac{\sqrt{xy}}{\sqrt{x}+\sqrt{y}}\cdot\dfrac{\sqrt{x}+\sqrt{y}}{x+\sqrt{xy}+y}\)
\(B=\dfrac{\sqrt{xy}}{x+\sqrt{xy}+y}\)
b) Xét tử:
\(\sqrt{xy}\ge0\forall x,y\) (xác định) (1)
Xét mẫu:
\(x+\sqrt{xy}+y\)
\(=\left(\sqrt{x}\right)^2+2\cdot\dfrac{1}{2}\sqrt{y}\cdot\sqrt{x}+\left(\dfrac{1}{2}\sqrt{y}\right)^2+\dfrac{3}{4}y\)
\(=\left(\sqrt{x}+\dfrac{1}{2}\sqrt{y}\right)^2+\dfrac{3}{4}y\)
Mà: \(\left(\sqrt{x}+\dfrac{1}{2}\sqrt{y}\right)^2\ge0\forall x,y\) (xác định), còn: \(\dfrac{3}{4}y\ge0\) vì theo đkxđ thì \(y\ge0\) (2)
Từ (1) và (2) ⇒ B luôn không âm với mọi x,y (\(B\ge0\)) (đpcm)
A=\(\left(\dfrac{x-y}{\sqrt{x}-\sqrt{y}}+\dfrac{\sqrt{x^3}-\sqrt{y^3}}{y-x}\right):\dfrac{\left(\sqrt{x}-\sqrt{y}\right)^2+\sqrt{xy}}{\sqrt{x}+\sqrt{y}}\)
a.rút gọn A
b. chứng minh A\(\ge0\)
a \(A=\dfrac{\left(x-y\right)\left(\sqrt{x}+\sqrt{y}\right)-x\sqrt{x}+y\sqrt{y}}{x-y}\cdot\dfrac{\left(\sqrt{x}+\sqrt{y}\right)}{x-\sqrt{xy}+y}\)
\(=\dfrac{x\sqrt{x}+x\sqrt{y}-y\sqrt{x}-y\sqrt{y}-x\sqrt{x}+y\sqrt{y}}{\sqrt{x}-\sqrt{y}}\cdot\dfrac{1}{x-\sqrt{xy}+y}\)
\(=\dfrac{\sqrt{xy}\left(\sqrt{x}-\sqrt{y}\right)}{\left(\sqrt{x}-\sqrt{y}\right)\left(x-\sqrt{xy}+y\right)}=\dfrac{\sqrt{xy}}{x-\sqrt{xy}+y}\)
b: căn xy>=0
x-căn xy+y
=x-2*căn x*1/2*căn y+1/4*y+3/4y
=(căn x-1/2*căn y)^2+3/4y>0
=>A>=0
Cho biểu thức P=\(\frac{\sqrt{xy}}{x-\sqrt{xy}+y}\)
a, Chứng minh \(P\ge0\)
B,So sánh P với \(\sqrt{P}\)
Q=\((\frac{x-y}{\sqrt{x}-\sqrt{y}}+\frac{\sqrt{x}^3-\sqrt{y}^3}{y-x}):\frac{\left(\sqrt{x}-\sqrt{y}\right)^2+\sqrt{xy}}{\sqrt{x}+\sqrt{y}}\)
1) rút gọn Q
2) chứng minh Q\(\ge0\)
3) so sánh Q với \(\sqrt{Q}\)
Q= [\(\frac{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{x}-\sqrt{y}}+\frac{\left(\sqrt{x}-\sqrt{y}\right)\left(x+\sqrt{xy}+y\right)}{\left(\sqrt{y}-\sqrt{x}\right)\left(\sqrt{y}+\sqrt{x}\right)}\)]\(:\frac{x-2\sqrt{xy}+y+\sqrt{xy}}{\sqrt{x}+\sqrt{y}}\)
\(Q=\left(\sqrt{x}+\sqrt{y}-\frac{x+\sqrt{xy}+y}{\sqrt{x}+\sqrt{y}}\right):\frac{x-\sqrt{xy}+y}{\sqrt{x}+\sqrt{y}}\)
\(Q=\frac{x+2\sqrt{xy}+y-x-\sqrt{xy}-y}{\sqrt{x}+\sqrt{y}}.\frac{\sqrt{x}+\sqrt{y}}{x-\sqrt{xy}+y}\)
\(Q=\frac{\sqrt{xy}}{x-\sqrt{xy}+y}\)