Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
pham thi kim chi
Xem chi tiết
Kudo Shinichi
27 tháng 4 2017 lúc 21:27

Ta có công thức \(\frac{a}{b.c}=\frac{a}{c-b}.\left(\frac{1}{b}-\frac{1}{c}\right)\)

Dựa vào công thức trên, ta có

\(\frac{1}{1.2}=\frac{1}{2-1}.\left(1-\frac{1}{2}\right)\)

\(\frac{1}{2.3}=\frac{1}{3-2}.\left(\frac{1}{2}-\frac{1}{3}\right)\)

............................................

\(\frac{1}{49.50}=\frac{1}{50-49}.\left(\frac{1}{49}-\frac{1}{50}\right)\)

\(A=1.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{49}-\frac{1}{50}\right)\)

\(\Rightarrow A=1-\frac{1}{50}=\frac{49}{50}\)

chắc chắn bạn ạ, ai thấy đúng hì ủng hộ nha

Nguyễn Thị Ngọc Mai
27 tháng 4 2017 lúc 21:29

\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}=1-\frac{1}{50}=\frac{49}{50}\)\(\frac{49}{50}\)

Vũ Tiến Mạnh
27 tháng 4 2017 lúc 21:31

A = \(\frac{1}{1\times2}+\frac{1}{2\times3}+...+\frac{1}{49\times50}\)

A = \(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\)

A = \(\frac{1}{1}-\frac{1}{50}\)

A = \(\frac{50}{50}-\frac{1}{50}\)

A = \(\frac{49}{50}\)

phan hoang ah
Xem chi tiết
Phùng Minh Quân
15 tháng 4 2018 lúc 10:49

Ta có : 

\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)

\(A=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)

\(A=1-\frac{1}{50}\)

\(A=\frac{49}{50}\)

Vậy \(A=\frac{49}{50}\)

Chúc bạn học tốt ~ 

Nguyễn Hà My
15 tháng 4 2018 lúc 10:49

= 1/1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ... + 1/49 - 1/50

= 1/1 - 1/50

= 49/50
 

Kiên-Messi-8A-Boy2k6
15 tháng 4 2018 lúc 10:49

\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)

\(=1-\frac{1}{50}=\frac{49}{50}\)

k mk nha

thanks

Nguyễn Văn Nhật Dũng
Xem chi tiết
Gà Game thủ
8 tháng 4 2019 lúc 12:33

A=\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)

A=\(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)

A=\(1-\frac{1}{50}\)

A=\(\frac{49}{50}\)

viet phan
Xem chi tiết
Nguyễn Ngọc Quý
31 tháng 8 2015 lúc 19:10

A = 1/1 - 1/2 + 1/2 - ....-1/50 = 1-1/50 = 49/50

B = 1/2 . (1/3 - 1/7 + 1/7 -.....-1/27) = 1/2. (1/3 - 1/27)

B = 1/2. 8/27 = 4/27      

lê thanh tuyền
Xem chi tiết
VICTORY_ Trần Thạch Thảo
6 tháng 4 2016 lúc 20:09

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)

\(=1-\frac{1}{50}\)

\(=\frac{49}{50}\)

Phạm Ngọc Sơn
6 tháng 4 2016 lúc 20:43

\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+.........+\frac{1}{49.50}\)

\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+.......+\frac{1}{49}-\frac{1}{50}\)

\(=\frac{1}{1}-\frac{1}{50}\)

\(\frac{50}{50}-\frac{1}{50}=\frac{49}{50}\)

Vì \(\frac{49}{50}<1\Rightarrow\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}<1\)

Do Thi Mai
Xem chi tiết
Nguyễn Thu Hiền
22 tháng 4 2017 lúc 16:42

49/50 nha ban!k va ket ban nhe!

Forever_Alone
22 tháng 4 2017 lúc 16:43

49/59 nhé bn tk cho mk nhé

Nguyễn Tiến Dũng
22 tháng 4 2017 lúc 16:43

=1-1/2+1/2-1/3+....+1/49-1/50

1-1/50=49/50

Đức Nhật Huỳnh
Xem chi tiết
Băng Dii~
6 tháng 10 2016 lúc 14:43

phân tích : 

= 2 + 6 + 12 + 20 + 30 ... + 2450

quy luật : 2 số liền nhau hơn kém nhau là các số chẵn liên tiếp :
   6 - 2 = 4 ; 12 - 6 = 6 ; 20 - 12 = 8

và bây giờ dùng tính chất dãy số để tính 

nhé !

Ngô Bá Sơn
6 tháng 10 2016 lúc 14:58

A×3=1.2.3+2.3.3+3.4.3+.......+49.50.3

A×3=1.2.(3-0)+2.3.(4-1)+3.4.(5-2)+.......+49.50.(51-48)

A×3=1.2.3-1.2.0+2.3.4-2.3.1+........+49.50.51-49.50.48

Ta thấy ngoài số 49.50.51 thì các số còn lại đều bị giản ước như 1.2.3 với 2.3.1;....nên 

A×3=49.50.51

A×3=124950

A=124950:3

A=41650.

Vậy A=41650.

Annie Nek
Xem chi tiết
Nguyễn Lê Phước Thịnh
19 tháng 1 2022 lúc 23:02

a: \(A=\dfrac{5}{7}-\dfrac{2}{7}+\dfrac{8}{11}+\dfrac{3}{11}+\dfrac{1}{2}=\dfrac{3}{7}+\dfrac{1}{2}+1=\dfrac{6+7+14}{14}=\dfrac{27}{14}\)

b: \(B=\dfrac{11}{17}+\dfrac{6}{17}-\dfrac{8}{19}-\dfrac{30}{19}+\dfrac{-3}{4}=1-2-\dfrac{3}{4}=-1-\dfrac{3}{4}=-\dfrac{7}{4}\)

c: \(C=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{49}-\dfrac{1}{50}=\dfrac{49}{50}\)

Nguyễn Bạch Gia Chí
Xem chi tiết
Đệ Nhất Kiếm Khách
5 tháng 3 2016 lúc 21:31

\(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+......+\frac{1}{999}-\frac{1}{1000}+1\)

\(\frac{1}{1}-\frac{1}{1000}+1\)

\(\frac{999}{1000}+1\)

\(\frac{1999}{1000}\)

Lê Ngọc Tuyền
5 tháng 3 2016 lúc 21:47

theo minh bang 1