So sánh :
A = \(\frac{100^{2015}+1}{100^{2016}+1}\) và B = \(\frac{100^{2016}+1}{100^{2017}+1}\)
A=\(\frac{100^{2015}+1}{100^{2016}+1}\)
B=\(\frac{100^{2016}+1}{100^{2017}+1}\)
So sánh A và B
so sanh A va B
\(A=\frac{2017^{100}}{1+2017+2017^2+2017^3+...+2017^{100}}\)
\(B=\frac{2016^{100}}{1+2016+2016^2+2016^3+...+2016^{100}}\)
Ta có: \(A=\frac{2017^{100}}{1+2017+2017^2+2017^3+...+2017^{100}}\)
\(\Leftrightarrow A=\frac{\left[\left(20.100\right)+16+1\right]^{100}}{1+2017+2017^2+2017^3+...+2017^{10}}\)
\(B=\frac{2016^{100}}{1+2016+2016^2+2016^3+...+2016^{100}}\)
\(\Leftrightarrow B=\frac{\left[\left(20.100+16\right)\right]^{100}}{1+2016+2016^2+2016^3+...+2016^{100}}\)
Ta có hai tổng A và B mới để so sánh:
\(A=\frac{\left[\left(20.100\right)+16+1\right]^{100}}{1+2017+2017^2+2017^3+...+2017^{100}}\)
\(B=\frac{\left[\left(20.100\right)+16\right]^{100}}{1+2016+2016^2+2016^3+...+2016^{100}}\)
Tới đây đơn giản rồi. Bạn làm tiếp đi nhé! Mẹ mình bắt tắt máy không cho làm nên đành dừng lại ở đây thôi! Thông cảm :V
So sánh A và B
\(A=\frac{100^{2015}+1}{100^{2014}+1}\)
\(B=\frac{100^{2016}+1}{100^{2015}+1}\)
Gấp nha!
Ta có:
B>\(\frac{100^{2016}+1+99}{100^{2015}+1+99}\)=\(\frac{100^{2016}+100}{100^{2015}+100}\)=\(\frac{100\left(100^{2016}+1\right)}{100\left(100^{2015}+1\right)}\)=\(\frac{100^{2015}+1}{100^{2014}+1}\)=A
Vậy B>A
so sánh
\(\frac{100^{2015^{ }}+1}{100^{2005}+1}\) và\(\frac{100^{2016}+1}{100^{2006}+1}\)
\(\frac{100^{2015}+1}{100^{2015}+1}=1\)
\(\frac{100^{2016}+1}{100^{2016}+1}=1\)
Vì 1 = 1 nên \(\frac{100^{2015}+1}{100^{2015}+1}=\frac{100^{2016}+1}{100^{2016}+1}\)
à mình nhìn nhầm đề
Mình giải nha
Đặt \(A=\frac{100^{2015}+1}{100^{2005}+1}\Rightarrow\frac{A}{100^{10}}=\frac{100^{2015}+1}{100^{2015}+100^{10}}=\frac{100^{2015}+100^{10}-999}{100^{2015}+100^{10}}=1-\frac{999}{100^{2015}+100^{10}}\)
Đặt \(B=\frac{100^{2016}+1}{100^{2006}+1}\Rightarrow\frac{B}{100^{10}}=\frac{100^{2016}+100^{10}-999}{100^{2016}+100^{10}}=1-\frac{999}{100^{2016}+100^{10}}\)
\(1-\frac{999}{100^{2015}+100^{10}}< 1-\frac{999}{100^{2016}+100^{10}}\Rightarrow A< B\)
Rõ ràng\(\frac{100^{2016}+1}{100^{2006}+1}\)<1 nên theo tính chất khi \(\frac{a}{b}\)< 1 => \(\frac{a}{b}\)<\(\frac{a+m}{b+m}\) => \(\frac{100^{2016}+1}{100^{2006}+1}\)<\(\frac{100^{2016}+1+99}{100^{2006}+1+99}\)
<\(\frac{100^{2016}+100}{100^{2006}+100}\)
=>\(\frac{100^{2016}+1}{100^{2006}+1}\)< \(\frac{100^{2016}+100}{100^{2006}+100}\) = \(\frac{100\left(100^{2015}+1\right)}{100\left(100^{2005}+1\right)}\)= \(\frac{\left(100^{2015}+1\right)}{\left(100^{2005}+1\right)}\)
Vậy\(\frac{100^{2016}+1}{100^{2006}+1}\) < \(\frac{\left(100^{2015}+1\right)}{\left(100^{2005}+1\right)}\)
a)Chứng minh rằng: \(\frac{200-\left(3+\frac{2}{3}+\frac{2}{4}+..+\frac{2}{100}\right)}{\frac{1}{2}+\frac{2}{3}+\frac{3}{4}+...+\frac{99}{100}}=2\)
b)\(A=\frac{-21}{10^{2016}}+\frac{-12}{10^{2017}};B=\frac{-12}{10^{2016}}+\frac{-21}{10^{2017}}\)
So sánh A và B
a/ Ta có
\(200-\left(3+\frac{2}{3}+\frac{2}{4}+...+\frac{2}{100}\right)\)
\(=1+2\left(1-\frac{1}{3}\right)+2\left(1-\frac{1}{4}\right)+...+2\left(1-\frac{1}{100}\right)\)
\(=1+2\left(\frac{2}{3}+\frac{3}{4}+...+\frac{99}{100}\right)\)
\(=2\left(\frac{1}{2}+\frac{2}{3}+...+\frac{99}{100}\right)\)
Thế lại bài toán ta được:
\(\frac{200-\left(3+\frac{2}{3}+\frac{2}{4}+...+\frac{2}{100}\right)}{\frac{1}{2}+\frac{2}{3}+...+\frac{99}{100}}\)
\(=\frac{2\left(\frac{1}{2}+\frac{2}{3}+...+\frac{99}{100}\right)}{\frac{1}{2}+\frac{2}{3}+...+\frac{99}{100}}=2\)
b/ Ta có:
A - B\(=\frac{-21}{10^{2016}}+\frac{12}{10^{2016}}+\frac{21}{10^{2017}}-\frac{12}{10^{2017}}\)
\(=\frac{9}{10^{2017}}-\frac{9}{10^{2016}}< 0\)
Vậy A < B
A=\(\dfrac{100^{2015}+1}{100^{2016}+1}\)
B=\(\dfrac{100^{2016}+1}{100^{2017}+1}\)
So sánh A và b
\(100A=\dfrac{100^{2016}+100}{100^{2016}+1}=1+\dfrac{99}{100^{2016}+1}\)
\(100B=\dfrac{100^{2017}+100}{100^{2017}+1}=1+\dfrac{99}{100^{2017}+1}\)
mà \(100^{2016}< 100^{2017}\)
nên A>B
Cho tổng A gồm 2016 số hạng A=\(\frac{1}{19^1}+\frac{2}{19^2}_{ }+\frac{3}{19^3}+..................+\frac{n}{19^n}+.....+\frac{2016}{19^{2016}}\)
Hãy so sánh A^2016 và A^2015
Ai giải được cho 100 tick
Không cần giải cũng biết đáp án:
Nếu A là số dương thì A^2016>A^2015
Nếu A là số âm thì A^2016 là số dương , A^2015 là số âm nên chắc chắn A^2016>A^2015
k nha
So sanh A va B biet
A=2017^100/1+2017+2017^2+2017^3+.....+2017^100
B=2016^100/1+2016+2016^2+2016^3+.....+2016^100
So sánh
a.
\(A=\frac{10}{50^{10}}+\frac{10}{50^8}\)Và \(B=\frac{11}{50^{10}}+\frac{9}{50^8}\)b. \(A=\frac{2016}{10^{20}}+\frac{2016}{100^{30}}\)Với\(B=\frac{2017}{100^{20}}+\frac{2015}{100^{30}}\)
Mọi người giúp mình nhanh với ạ! Tối nay mình phải nộp bài rồi