Những câu hỏi liên quan
:vvv
Xem chi tiết
Akai Haruma
13 tháng 3 2021 lúc 14:32

Thay $x=\sqrt{\frac{1}{2,5}}; y=z=\sqrt{\frac{1}{0,25}}$ ta thấy đề sai bạn nhé!

Lấp La Lấp Lánh
Xem chi tiết
๖²⁴ʱ乂ų✌й๏✌ρɾ๏༉
Xem chi tiết
Hùng Mạnh
Xem chi tiết
Lê Đặng Phương Thúy
Xem chi tiết
Phía sau một cô gái
2 tháng 1 2023 lúc 15:08

Ta có: \(\dfrac{y-z}{\left(x-y\right)\left(x-z\right)}=\dfrac{y-x+x-z}{\left(x-y\right)\left(x-z\right)}\)\(=\dfrac{y-x}{\left(x-y\right)\left(x-z\right)}+\dfrac{x-z}{\left(x-y\right)\left(x-z\right)}\) \(=\dfrac{1}{z-x}+\dfrac{1}{x-y}\)

Tương tự:

\(\dfrac{z-x}{\left(y-z\right)\left(y-x\right)}=\dfrac{1}{x-y}+\dfrac{1}{y-z}\)

\(\dfrac{x-y}{\left(z-x\right)\left(z-y\right)}=\dfrac{1}{y-z}+\dfrac{1}{z-x}\)

\(\Rightarrow\dfrac{y-z}{\left(x-y\right)\left(x-z\right)}+\dfrac{z-x}{\left(y-z\right)\left(y-x\right)}+\dfrac{x-y}{\left(z-x\right)\left(z-y\right)}\) \(=\dfrac{2}{x-y}+\dfrac{2}{y-z}+\dfrac{2}{z-x}\) \(\left(đpcm\right)\)

Trần Minh Tâm
Xem chi tiết
Phương An
17 tháng 10 2017 lúc 21:01

\(VT=\left(xyz+1\right)\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)+\dfrac{x}{z}+\dfrac{z}{y}+\dfrac{y}{x}\)

\(=yz+xz+xy+\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}+\dfrac{x}{z}+\dfrac{z}{y}+\dfrac{y}{x}\)

\(=\left(yz+xz+xy\right)+\left(\dfrac{x^2}{xz}+\dfrac{z^2}{yz}+\dfrac{y^2}{xy}\right)+\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\)

\(\ge\left(yz+xz+xy\right)+\dfrac{\left(x+y+z\right)^2}{\left(xz+yz+xy\right)}+\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\)

(bđt Cauchy Shwarz dạng Engel)

\(\ge2\left(x+y+z\right)+\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\)

(bđt AM - GM)

\(=\left(x+y+z\right)+\left(x+y+z+\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\)

\(\ge\left(x+y+z\right)+6\sqrt[6]{x\times y\times z\times\dfrac{1}{x}\times\dfrac{1}{y}\times\dfrac{1}{z}}\)

\(=x+y+z+6=VP\left(\text{đ}pcm\right)\)

Nguyễn Khánh Huyền
Xem chi tiết
Akai Haruma
19 tháng 3 2018 lúc 15:36

Lời giải:

Từ \(xy+yz+xz=xyz\Rightarrow \frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\)

Đặt \((a,b,c)=\left(\frac{1}{x}; \frac{1}{y}; \frac{1}{z}\right)\Rightarrow a+b+c=1\)

BĐT cần chứng minh trở thành:

\(P=\frac{c^3}{(a+1)(b+1)}+\frac{a^3}{(b+1)(c+1)}+\frac{b^3}{(c+1)(a+1)}\geq \frac{1}{16}(*)\)

Thật vậy, áp dụng BĐT Cauchy ta có:

\(\frac{c^3}{(a+1)(b+1)}+\frac{a+1}{64}+\frac{b+1}{64}\geq 3\sqrt[3]{\frac{c^3}{64^2}}=\frac{3c}{16}\)

\(\frac{a^3}{(b+1)(c+1)}+\frac{b+1}{64}+\frac{c+1}{64}\geq 3\sqrt[3]{\frac{a^3}{64^2}}=\frac{3a}{16}\)

\(\frac{b^3}{(c+1)(a+1)}+\frac{c+1}{64}+\frac{a+1}{64}\geq 3\sqrt[3]{\frac{b^3}{64^2}}=\frac{3b}{16}\)

Cộng theo vế các BĐT trên và rút gọn :

\(\Rightarrow P+\frac{a+b+c+3}{32}\geq \frac{3(a+b+c)}{16}\)

\(\Leftrightarrow P+\frac{4}{32}\geq \frac{3}{16}\Leftrightarrow P\geq \frac{1}{16}\)

Vậy \((*)\) được chứng minh. Bài toán hoàn tất.

Dấu bằng xảy ra khi \(a=b=c=\frac{1}{3}\Leftrightarrow x=y=z=3\)

NGUYỄN MINH HUY
Xem chi tiết
Nguyễn Việt Lâm
3 tháng 4 2021 lúc 18:15

\(VT\ge3\sqrt[3]{\dfrac{x^3y^3z^3\left(x+y\right)\left(y+z\right)\left(z+x\right)}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}}=3xyz\) (dpcm)

Khánh Phan Bá Hoàng
Xem chi tiết
Nguyễn Thị Ngọc Thơ
31 tháng 7 2018 lúc 8:57

Sai đề kìa.

Bạn tham khảo: Câu hỏi của Ngoc An Pham - Toán lớp 9 | Học trực tuyến

Trần Trung Nguyên
23 tháng 12 2018 lúc 16:34

Ta có \(xy\left(x-y\right)^2+\left(xy-1\right)^2\ge0\Leftrightarrow\left(2+2x+2y+x^2+y^2\right)\left(1+xy\right)\ge\left(1+2x+x^2\right)\left(1+2y+y^2\right)\Leftrightarrow\left[\left(1+x\right)^2+\left(1+y\right)^2\right]\left(1+xy\right)\ge\left(1+x\right)^2\left(1+y\right)^2\Leftrightarrow\dfrac{\left(1+x\right)^2+\left(1+y\right)^2}{\left(1+x\right)^2\left(1+y\right)^2}\ge\dfrac{1}{1+xy}\Leftrightarrow\dfrac{1}{\left(1+x\right)^2}+\dfrac{1}{\left(1+y\right)^2}\ge\dfrac{1}{1+xy}\)

Dấu bằng xảy ra khi \(\left\{{}\begin{matrix}x-1=0\\xy-1=0\end{matrix}\right.\)\(\Leftrightarrow\)\(\left\{{}\begin{matrix}x=1\\y=1\end{matrix}\right.\)

Vậy ta có \(\dfrac{1}{\left(1+x\right)^2}+\dfrac{1}{\left(1+y\right)^2}\ge\dfrac{1}{1+xy}\)

 Mashiro Shiina
23 tháng 12 2018 lúc 18:33

Nhân 2 vào cả 2 vế:

\(VT=\dfrac{2}{\left(x+1\right)^2}+\dfrac{2}{\left(y+1\right)^2}\)

\(\ge\dfrac{2}{\left(1^2+1^2\right)\left(x^2+1^2\right)}+\dfrac{2}{\left(1^2+1^2\right)\left(y^2+1^2\right)}\)

\(=\dfrac{1}{x^2+1}+\dfrac{1}{y^2+1}\)

\(VP=\dfrac{2}{1+xy}\)

Trở về bài toán của Ther