Cứu tui cứu tui
Cho tam giác ABC cân tại A. D thuộc tia đối BC, E thuộc tia đối CB. BD=CE. kẻ BH vông góc AD, CK vuông góc AE.(H thuộc AB, K thuộc AE)
a)BH=CK
b)tam giác AHB= tam giác AKC
c)BC song song HK
Tam giác ABC cân tại A, trên tia đối của BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD=CE. Kẻ BH vuông góc với AD (H thuộc AD). Kẻ CK vuông góc với AE(K thuộc AE). Chưng minh:
a) BH =CK
b) tam giác AHB= tam giác AKC
c) BC song song HK
a,b: Xét ΔABD và ΔACE có
AB=AC
góc ABD=góc ACE
BD=CE
=>ΔABD=ΔACE
=>AD=AE và góc D=góc E; góc DAB=góc EAC
Xet ΔAHB vuông tại H và ΔAKC vuông tại K có
AB=AC
góc HAB=góc KAC
=>ΔAHB=ΔAKC
=>BH=CK
c: Xét ΔADE có AH/AD=AK/AE
nên HK//DE
=>HK//BC
Cho tam giác abc cân tại a. Trên tia đối của bc lấy điểm d, trên tia đối của cb lấy điểm e sao cho bd=ce.
a. CM: tam giác ade ;à tam giác cân
b. Kẻ bh vuông góc với ad (h thuộc ad), kẻ ck vuông góc với ae (k thuộc ae). CML bh=ck và hk song song với bc
c. Gội là giao điểm của bh và ck. Tam giác obc là tam giác gì? ví sao?
d. M là trung điểm của bc. CMR: am, bh, ck đồng quy
a: Xét ΔABD và ΔACE có
AB=AC
\(\widehat{ABD}=\widehat{ACE}\)
BD=CE
Dođó: ΔABD=ΔACE
Suy ra: AD=AE
hay ΔADE cân tại A
b: Xét ΔAHB vuông tại H và ΔAKC vuông tại K có
AB=AC
\(\widehat{HAB}=\widehat{KAC}\)
Do đó: ΔAHB=ΔAKC
Suy ra: BH=CK và AH=AK
Xét ΔADE có
AH/AD=AK/AE
Do đó: HK//DE
hay HK//BC
c: Ta có: \(\widehat{OBC}=\widehat{HBD}\)
\(\widehat{OCB}=\widehat{KCE}\)
mà \(\widehat{HBD}=\widehat{KCE}\)
nên \(\widehat{OBC}=\widehat{OCB}\)
hay ΔOBC cân tại O
Cho tam giác ABC cân tại A. Trên tia đối của tia BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD = CE. Kẻ BH vuông góc với AD (H thuộc AD), kẻ CK vuông góc với AE ( K thuộc AE ). Kẻ BM vuông góc với AE (M thuộc AE), kẻ CN vuông góc với AD. Chứng minh rằng:
a) tam giác ADE là tam giác gì?;
b) BH = CK, BM = CN;
c) tam giác AHB = tam giác AKC;
d) BC song song với HK.
a: Xét ΔABD và ΔACE có
AB=AC
góc ABD=góc ACE
BD=CE
=>ΔADB=ΔAEC
=>AD=AE
=>ΔADE cân tại A
b,c: Xét ΔAHB vuông tại H và ΔAKC vuông tại K có
AB=AC
góc HAB=góc KAC
=>ΔAHB=ΔAKC
=>BH=CK
Xét ΔAMB vuông tại M và ΔANC vuông tại N có
AB=AC
góc MAB=góc NAC(góc MAB=góc MAC+góc BAC;góc NAC=góc NAB+góc BAC;gócMAC=góc NAB)
=>ΔAMB=ΔANC
=>BM=CN
d: Xét ΔADE có AH/AD=AK/AE
nên HK//DE
=>HK//BC
Cho tam giác ABC cân tại A. Trên tia đối của tia BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD = CE. Kẻ BH vuông góc với AD (H thuộc AD), kẻ CK vuông góc với AE ( K thuộc AE ). Chứng minh rằng:
a) BH = CK
b) tam giác AHB = tam giác AKC;
c) BC song song với HK.
a,b mk làm đc rồi giúp mk câu c vs cần gấp!!!
a:
Xét ΔABD và ΔACE có
AB=AC
góc ABD=góc ACE
BD=CE
=>ΔABD=ΔACE
=>AD=AE
Xét ΔBHD vuông tại H và ΔCKE vuông tại K có
BD=CE
góc D=góc E
=>ΔBHD=ΔCKE
=>BH=CK
b:
Xét ΔAHB vuông tại H và ΔAKC vuông tại K có
AB=AC
BH=CK
=>ΔAHB=ΔAKC
c: Xét ΔADE có AH/AD=AK/AE
nên HK//DE
=>HK//BC
Cho tam giác ABC cân tại A Trên tia đối của tia BC lấy điểm D Trên tia đối của tia CB lấy điểm E Sao cho BD=CE.Kẻ BH vuông góc AD (H thuộc AD),kẻ CK vuông góc AE (K thuộc AE) a,c/m BH=CK b, c/m tam giác AHB= tam giác AHC c,c/m BC//HK
a: Xét ΔABD và ΔACE có
AB=AC
\(\widehat{ABD}=\widehat{ACE}\)
BD=CE
Do đó: ΔABD=ΔACE
Suy ra: \(\widehat{D}=\widehat{E}\)
Xét ΔHDB vuông tại H và ΔKEC vuông tại K có
BD=CE
\(\widehat{D}=\widehat{E}\)
Do đó: ΔHDB=ΔKEC
Suy ra: BH=CK
b: Xét ΔAHB vuông tại H và ΔAKC vuông tại K có
AB=AC
BH=CK
Do đó: ΔAHB=ΔAKC
cho tam giác ABC cân tại A. Trên tia đối của BC lấy điểm D, trên tia đối của CB lấy điểm E sao cho BD=CE. Kẻ BH vuông góc với AD( H thuộc AD), CK vuông góc với AE. CMR:
a) BH=CK
b) tam giác AHB=AKC
c)BC song song HK
a:
Xét ΔABD và ΔACE có
AB=AC
góc ABD=góc ACE
BD=CE
=>ΔABD=ΔACE
=>AD=AE
Xét ΔBHD vuông tại H và ΔCKE vuông tại K có
BD=CE
góc D=góc E
=>ΔBHD=ΔCKE
=>BH=CK
b:
Xét ΔAHB vuông tại H và ΔAKC vuông tại K có
AB=AC
BH=CK
=>ΔAHB=ΔAKC
c: Xét ΔADE có AH/AD=AK/AE
nên HK//DE
=>HK//BC
Cho tam giác ABC cân tại A. Trên tia đối của tia BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD = CE. Kẻ BH vuông với AD (H thuộc AD), kẻ CK vuông với AE (K thuộc AE) CMR :
a) BH = CK
b) tam giác AHB = tam giác AHC
c) BC//HK
cho tam giác ABC cân tại A. Trên tia đối BC lấy D trên tia đối CB lấy E sao cho BD=CE. kẻ BH vuông góc AD tại H và CK vuông góc với AE tại K. CMR
a) tam giác BHD=tam giác CKE
b) tam giác AHB= tam giácAKC
c)BC song song HK
a: Xét ΔABD và ΔACE có
AB=AC
góc ABD=góc ACE
BD=CE
=>ΔABD=ΔACE
=>AD=AE
Xét ΔBHD vuông tại H và ΔCKE vuông tại K có
BD=CE
góc D=góc E
=>ΔBHD=ΔCKE
b: Xét ΔAHB vuông tại H và ΔAKC vuông tại K có
AB=AC
BH=CK
=>ΔAHB=ΔAKC
c: Xét ΔADE có AH/AD=AK/AE
nên HK//DE
=>HK//BC
Cho tam giác ABC; AB=AC. Trên tia đối của tia BC lấy điểm D; và trên tua đối của tia CB lấy điểm E sao cho BD=CE. KẺ BH vuông góc AD( H thuộc AD); CK vuông góc AE( K thuộc AE).
a, Chứng minh: Tam giác ABD= Tam giác ACE; tam giác ACD= tam giác ABE
b, Chứng minh: BH=CK
c, Gọi M, N tương ứng là trung điểm của HK,BC; và I=BH Ω CK. Chứng minh rằng: A,M,N,I thẳng hàng.
GIÚP MINH VỚI MÌNH ĐANG THI NÊN CẦN GẤP LẮM. CHO MÌNH CẢ HÌNH VẼ NỮA NHÉ.
a: Xét ΔABD và ΔACE có
AB=AC
\(\widehat{ABD}=\widehat{ACE}\)
BD=CE
Do đó: ΔABD=ΔACE
Suy ra: AD=AE
Xét ΔACD và ΔABE có
AC=AB
CD=BE
AD=AE
Do đó: ΔACD=ΔABE
b: Xét ΔAHB vuông tại H và ΔAKC vuông tại K có
AB=AC
\(\widehat{HAB}=\widehat{KAC}\)
Do đó: ΔAHB=ΔAKC
Suy ra: BH=CK
Cho mình xin hình vẽ với câu c nữa. Mình cảm ơn nhiều lắm huhuhhhu