A= 1/6 + 1/10 + 1/15 ..........+ 1/55
so sánh A = 1/10 + 1/15 + 1/21 + ... +1/66 VÀ B = 1/6 + 1/10 + 1/15 +... +1/55
\(A=\frac{1}{10}+\frac{1}{15}+\frac{1}{21}+...+\frac{1}{66}\)
\(\frac{A}{2}=\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+...+\frac{1}{132}\)
\(\frac{A}{2}=\frac{1}{4\cdot5}+\frac{1}{5\cdot6}+\frac{1}{6\cdot7}+...+\frac{1}{11\cdot12}\)
\(\frac{A}{2}=\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{11}-\frac{1}{12}\)
\(\frac{A}{2}=\frac{1}{4}-\frac{1}{12}\)
\(\Rightarrow A=\frac{2}{4}-\frac{2}{12}=\frac{16}{48}\)
\(B=\frac{1}{6}+\frac{1}{10}+\frac{1}{15}+...+\frac{1}{55}\)
\(\frac{B}{2}=\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+...+\frac{1}{110}\)
\(\frac{B}{2}=\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+\frac{1}{5\cdot6}+...+\frac{1}{10\cdot11}\)
\(\frac{B}{2}=\frac{1}{3}-\frac{1}{4}+...+\frac{1}{10}-\frac{1}{11}\)
\(\frac{B}{2}=\frac{1}{3}-\frac{1}{11}\)
\(\Rightarrow B=\frac{2}{3}-\frac{2}{11}=\frac{16}{33}\)
Mà \(\frac{16}{48}< \frac{16}{33}\Rightarrow A< B\)
Vậy : A < B
A= 1/3 + 1/6 + 1/10 + 1/15 + 1/21 +1/28 + 1/36 +1/45 + 1/55
\(A=\dfrac{1}{3}+\dfrac{1}{6}+\dfrac{1}{10}+\dfrac{1}{15}+\dfrac{1}{21}+\dfrac{1}{28}+\dfrac{1}{36}+\dfrac{1}{45}+\dfrac{1}{55}\)
\(A=2\times\dfrac{1}{2}\times\left(\dfrac{1}{3}+\dfrac{1}{6}+\dfrac{1}{10}+\dfrac{1}{15}+\dfrac{1}{21}+\dfrac{1}{28}+\dfrac{1}{36}+\dfrac{1}{45}+\dfrac{1}{55}\right)\)
\(A=2\times\left(\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{20}+\dfrac{1}{30}+\dfrac{1}{42}+\dfrac{1}{56}+\dfrac{1}{72}+\dfrac{1}{90}+\dfrac{1}{110}\right)\)
\(A=2\times\left(\dfrac{1}{2\times3}+\dfrac{1}{3\times4}+\dfrac{1}{4\times5}+\dfrac{1}{5\times6}+...+\dfrac{1}{9\times10}+\dfrac{1}{10\times11}\right)\)
\(A=2\times\left(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{10}-\dfrac{1}{11}\right)\)
\(A=2\times\left(\dfrac{1}{2}-\dfrac{1}{11}\right)\)
\(A=2\times\dfrac{9}{22}\)
\(A=\dfrac{9}{11}\)
\(A=\frac{1}{6}+\frac{1}{10}+\frac{1}{15}+...+\frac{1}{55}\)
\(A=\frac{1}{6}+\frac{1}{10}+\frac{1}{15}+...+\frac{1}{55}\) => \(\frac{A}{2}=\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+...+\frac{1}{110}=\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{10.11}\)
=> \(\frac{A}{2}=\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{10}-\frac{1}{11}=\frac{1}{3}-\frac{1}{11}=\frac{8}{33}\)
=> \(A=\frac{16}{33}\)
Ai giải bài này hộ mình với:cho A=1/3+1/6+1/10+1/15+...+1/55+1/66.Hãy so sánh A với 1
do những số đó bé hơn 1 nên cộng lại vẫn bé hơn 1
A = \(\dfrac{1}{3}\) + \(\dfrac{1}{6}\) + \(\dfrac{1}{10}\) + \(\dfrac{1}{15}\) + ..+ \(\dfrac{1}{55}\)+ \(\dfrac{1}{66}\)
A = 2 \(\times\) ( \(\dfrac{1}{6}\) + \(\dfrac{1}{12}\) + \(\dfrac{1}{20}\) + \(\dfrac{1}{30}\) +...+ \(\dfrac{1}{110}\) + \(\dfrac{1}{132}\))
A = 2 \(\times\) ( \(\dfrac{1}{2.3}\) + \(\dfrac{1}{3.4}\) + \(\dfrac{1}{4.5}\)+ \(\dfrac{1}{5.6}\) +...+ \(\dfrac{1}{10.11}\)+ \(\dfrac{1}{11.12}\))
A = 2 \(\times\) ( \(\dfrac{1}{2}\) - \(\dfrac{1}{3}\) + \(\dfrac{1}{3}\) - \(\dfrac{1}{4}\) + \(\dfrac{1}{4}\) - \(\dfrac{1}{5}\) + \(\dfrac{1}{5}\) - \(\dfrac{1}{6}\) +...+ \(\dfrac{1}{10}\) - \(\dfrac{1}{11}\)+ \(\dfrac{1}{11}\) - \(\dfrac{1}{12}\))
A = 2 \(\times\) ( \(\dfrac{1}{2}\) - \(\dfrac{1}{12}\))
A = 1 - \(\dfrac{1}{6}\) < 1
Vậy A = \(\dfrac{1}{3}\) + \(\dfrac{1}{6}\) + \(\dfrac{1}{10}\) + \(\dfrac{1}{15}\) + ...+ \(\dfrac{1}{55}\)+ \(\dfrac{1}{66}\) < 1
tính tổng sau = cách hợp lý 1/6 +1/10 +1/15 +.... +1/55
1+1/3+1/6+1/10+1/15+...+1/55
Giúp mình nhé!! >.<!!!
\(1+\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+\frac{1}{15}+...+\frac{1}{55}\)
\(2+\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+\frac{2}{30}+...+\frac{2}{110}\)
\(2+2.\left(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+...+\frac{1}{55}\right)\)
\(2+2.\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{10.11}\right)\)
\(2+2.\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{10}-\frac{1}{11}\right)\)
\(2+2.\left(\frac{1}{2}-\frac{1}{11}\right)\)
\(2+2.\frac{9}{22}\)
\(2+\frac{9}{11}\)
\(\frac{31}{11}\)
Gọi biểu thức trên là A
Ta có :
\(A=1+\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{1}{55}\)
\(\frac{1}{2}A=\frac{1}{2}\times\left(1+\frac{1}{3}+\frac{1}{6}+...+\frac{1}{55}\right)\)
\(\frac{1}{2}A=\frac{1}{2}\times1+\frac{1}{2}\times\frac{1}{3}+...+\frac{1}{2}\times\frac{1}{55}\)
\(\frac{1}{2}A=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{110}\)
\(\frac{1}{2}A=\frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+...+\frac{1}{10\times11}\)
\(\frac{1}{2}A=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{10}-\frac{1}{11}\)
\(\frac{1}{2}A=1-\frac{1}{11}\)
\(\frac{1}{2}A=\frac{10}{11}\)
\(A=\frac{10}{11}\div\frac{1}{2}\)
\(A=\frac{20}{11}\)
Ta đặt:
\(A=1+\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+\frac{1}{15}+...+\frac{1}{55}\)
\(\Rightarrow\frac{1}{2}A=1.\frac{1}{2}+\frac{1}{2}.\frac{1}{3}+\frac{1}{2}.\frac{1}{6}+\frac{1}{2}.\frac{1}{10}+\frac{1}{2}.\frac{1}{15}+...+\frac{1}{2}.\frac{1}{55}\)
\(\Rightarrow\frac{1}{2}A=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+...+\frac{1}{110}\)
\(\Rightarrow\frac{1}{2}A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{10.11}\)
\(\Rightarrow\frac{1}{2}A=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{10}-\frac{1}{11}\)
\(\Rightarrow\frac{1}{2}A=\frac{1}{1}-\frac{1}{11}=\frac{10}{11}\Leftrightarrow A=\frac{10}{11}:\frac{1}{2}=\frac{20}{11}\)
\(\frac{1}{6}+\frac{1}{10}+\frac{1}{15}+...+\frac{1}{55}\)
\(\frac{1}{6}+\frac{1}{10}+\frac{1}{15}+....+\frac{1}{55}\)
=\(\frac{2}{12}+\frac{2}{20}+\frac{2}{30}+....+\frac{2}{110}\)
=\(2.\left(\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+....+\frac{1}{10.11}\right)\)
=\(2.\left(\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+..+\frac{1}{10}-\frac{1}{11}\right)\)
= \(2.\left(\frac{1}{3}-\frac{1}{11}\right)\)
=\(2.\frac{8}{33}\)
= \(\frac{16}{33}\)
TÍNH 1+1/3+1/6+1/10+1/15+1/21+1/28+1/36+1/45+1/55+1/66
Bài làm:
Ta có: \(1+\frac{1}{3}+\frac{1}{6}+...+\frac{1}{66}\)
\(=\frac{1}{1}+\frac{1}{1.3}+\frac{1}{3.2}+...+\frac{1}{11.6}\)
\(=\frac{1}{2}\left(\frac{1}{1.2}+\frac{1}{2.1.3}+\frac{1}{2.3.2}+...+\frac{1}{2.11.6}\right)\)
\(=\frac{1}{2}\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{11.12}\right)\)
\(=\frac{1}{2}\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{11}-\frac{1}{12}\right)\)
\(=\frac{1}{2}\left(1-\frac{1}{12}\right)\)
\(=\frac{1}{2}.\frac{11}{12}\)
\(=\frac{11}{24}\)
\(1+\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+\frac{1}{15}+\frac{1}{21}+\frac{1}{28}+\frac{1}{36}+\frac{1}{45}+\frac{1}{55}+\frac{1}{66}\)
\(=\frac{2}{2}+\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+\frac{2}{30}+...+\frac{2}{90}+\frac{2}{110}+\frac{2}{132}\)
\(=2\times\left(\frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+\frac{1}{4\times5}+\frac{1}{5\times6}+...+\frac{1}{9\times10}+\frac{1}{10\times11}+\frac{1}{11\times12}\right)\)
\(=2\times\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{10}-\frac{1}{11}+\frac{1}{11}-\frac{1}{12}\right)\)
\(=2\times\left(1-\frac{1}{12}\right)\)
\(=2\times\frac{11}{12}\)
\(=\frac{11}{6}\)
\(1+\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+\frac{1}{15}+\frac{1}{21}+\frac{1}{28}+\frac{1}{36}+\frac{1}{45}+\frac{1}{55}+\frac{1}{66}\)
\(=\frac{2}{2}+\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+\frac{2}{30}+...+\frac{2}{90}+\frac{2}{110}+\frac{2}{132}\)
\(=2\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{9.10}+\frac{1}{10.11}+\frac{1}{11.12}\right)\)
\(=2\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{9}-\frac{1}{10}+\frac{1}{10}-\frac{1}{11}+\frac{1}{11}-\frac{1}{12}\right)\)
\(=2\left(1-\frac{1}{12}\right)=2.\frac{11}{12}=\frac{22}{12}=\frac{11}{6}\)
Tính A =\(\dfrac{1}{6}+\dfrac{1}{10}+\dfrac{1}{15}+\dfrac{1}{21}+\dfrac{1}{28}+\dfrac{1}{36}+\dfrac{1}{45}+\dfrac{1}{55}+\dfrac{1}{66}+\dfrac{1}{78}\)
A =\(2.\left(\dfrac{1}{12}+\dfrac{1}{20}+\dfrac{1}{30}+\dfrac{1}{42}+......+\dfrac{1}{156}\right)\)
A =\(2.\left(\dfrac{1}{3.4}+\dfrac{1}{4.5}+\dfrac{1}{5.6}+\dfrac{1}{6.7}+..........+\dfrac{1}{12.13}\right)\)
A =2.\(\left(\dfrac{1}{3}-\dfrac{1}{13}\right)\)
A=\(2.\dfrac{10}{39}=\dfrac{20}{39}\)