Giải bpt: (x-3)(x+1(2-3x)>0
Giải bpt: (x2 + 5)(2x + 3)(3x - 1) < 0
\(\left(x^2+5\right)\left(2x+3\right)\left(3x-1\right)< 0\)
Do \(\left(x^2+5\right)>0\)
\(\Rightarrow bpt\Leftrightarrow\left(2x+3\right)\left(3x-1\right)< 0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}2x+3>0\\3x-1< 0\end{matrix}\right.\\\left\{{}\begin{matrix}2x+3< 0\\3x-1>0\end{matrix}\right.\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x>\frac{-3}{2}\\x< \frac{1}{3}\end{matrix}\right.\\\left\{{}\begin{matrix}x< \frac{-3}{2}\\x>\frac{1}{3}\end{matrix}\right.\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}\frac{-3}{2}< x< \frac{1}{3}\left(chon\right)\\\frac{1}{3}< x< \frac{-3}{2}\left(loai\right)\end{matrix}\right.\)
Vậy...
giải các bpt sau
a,\(\dfrac{x^2+2x-13}{x-1}< 1\)
b,\(\dfrac{3x^2+x-4}{x-1}< 3\)
c,\(\dfrac{2x^2-3x+1}{x+2}>0\)
d,\(\dfrac{x^2-x-6}{x^2-1}\le1\)
a: =>\(\dfrac{x^2+2x-13-x+1}{x-1}< 0\)
=>\(\dfrac{x^2+x-12}{x-1}< 0\)
=>\(\dfrac{\left(x+4\right)\left(x-3\right)}{x-1}< 0\)
=>1<x<3 hoặc x<-4
b: =>\(\dfrac{3x^2+4x-3x-4}{x-1}< 3\)
=>3x+4<3
=>3x<-1
=>x<-1/3
c: TH1: 2x^2-3x+1>0 và x+2>0
=>(2x-1)(x-1)>0 và x+2>0
=>x>1
TH2: (2x-1)(x-1)<0 và x+2<0
=>x<-2 và 1/2<x<1
=>Loại
Giải bpt 3x²+11x+4-4(x+1)√(2x+1)-2(x-1)√x >= 0
giải các pt và bpt sau:
| 2-4x | = 4x-2
2x-7> 3(x-1)
1-2x<4(3x-2)
-3x+2/-4 -x>/ 0
4x-1/x-2\< 0
| 2-4x | = 4x-2
<=> \(\orbr{\begin{cases}\left|2-4x\right|=-2+4x=4x-2\\\left|2-4x\right|=2-4x=4x-2\end{cases}}\)
<=>\(\orbr{\begin{cases}-2+4x=4x-2\\2-4x=4x-2\end{cases}}\)
<=>\(\orbr{\begin{cases}-2+4x-4x+2=0\\2-4x-4x+2=0\end{cases}}\)
<=>\(\orbr{\begin{cases}0=0\\-8x+4=0\end{cases}}\)
<=> x=\(\frac{-4}{-8}=\frac{1}{2}\)
=> \(S=\left\{\frac{1}{2};\infty\right\}\)
2x-7> 3(x-1)
<=>2x-7>3x-3
<=>2x-3x>-3+7
<=>-x>4
<=>x<4
=>S={x/x<4}
1-2x<4(3x-2)
<=>1-2x<12x-8
<=>-2x-12x<-8-1
<=>-14x<-9
<=>x>\(\frac{9}{14}\)
=>S={\(\frac{9}{14}\)}
-3x+2|-4 -x|> 0
<=>\(\orbr{\begin{cases}-3x+2+4+x>0\\-3x+2-4x-x>0\end{cases}}\)
<=>\(\orbr{\begin{cases}-2x+6>0\\-8x+2>0\end{cases}}\)
<=>\(\orbr{\begin{cases}-2x>-6\\-8x>-2\end{cases}}\)
<=>\(\orbr{\begin{cases}x< 3\\x< \frac{1}{4}\end{cases}}\)
=>S={x/x<3;x/x<\(\frac{1}{4}\)}
4x-1|x-2|< 0
<=>\(\orbr{\begin{cases}4x-1-x+2< 0\\4x-1+x-2< 0\end{cases}}\)
<=>\(\orbr{\begin{cases}3x+1< 0\\3x-3< 0\end{cases}}\)
<=>\(\orbr{\begin{cases}3x< -1\\3x< 3\end{cases}}\)
<=>\(\orbr{\begin{cases}x< \frac{-1}{3}\\x< 1\end{cases}}\)
=>S={x/x<\(\frac{-1}{3}\);x/x<1}
giải bpt
a) \(x^2-3x-\sqrt{x^2-3x+5}>1\)
b) \(\sqrt[4]{x-\sqrt{x^2-1}}+4\sqrt{x+\sqrt{x^2-1}}-3< 0\)
a/ Đặt \(\sqrt{x^2-3x+5}=t>0\)
\(\Leftrightarrow t^2-5-t>1\Leftrightarrow t^2-t-6>0\)
\(\Rightarrow\left[{}\begin{matrix}t>3\\t< -2\left(l\right)\end{matrix}\right.\) \(\Rightarrow\sqrt{x^2-3x+5}>3\)
\(\Leftrightarrow x^2-3x+5>9\Leftrightarrow x^2-3x-4>0\Rightarrow\left[{}\begin{matrix}x>4\\x< -1\end{matrix}\right.\)
b/ ĐKXĐ: \(x\ge1\)
Đặt \(\sqrt[4]{x-\sqrt{x^2-1}}=t>0\Rightarrow\sqrt[4]{x+\sqrt{x^2-1}}=\frac{1}{t}\)
\(\Leftrightarrow t+\frac{4}{t^2}-3< 0\)
\(\Leftrightarrow t^3-3t^2+4< 0\)
\(\Leftrightarrow\left(t+1\right)\left(t-2\right)^2< 0\)
Do \(t>0\Rightarrow t+1>0\Rightarrow VT\ge0\Rightarrow\) BPT vô nghiệm
1. Tìm tập nghiệm của bất pt |2x-5|<3?
2. Tất cả các giá trị của x thỏa mãn|x-1|<1 là..?
3. Nghiệm của bpt |2x-3|≤1 là?
4. Bpt |3x-4| ≤2 có nghiệm là?
5. Cho biểu thức f(x)=2x-4. Tập hợp các giá trị của x để f(x) ≥0 là..?
6. Cho biểu thức f(x)= 1/3x-6 tập hợp tất cả các gtrị của x để f(x)≤0 là?
7. Cho bthức f(x)=(2-x/x+1) +2. Tập hợp tất cả các giá trị của X thỏa mãn bpt f(x)<0 là?
8. Cho biểu thức f(x)=1- (2-x/3x-2). Tập hợp tất cả các gtrị của X thỏa mãn bpt f(x)≤0 là?
9. Tập nghiệm của bpt (x-1/x-3)-1<0 là?
10. Số x=2 là nghiệm của bpt nào sau đây:
a) 4-X<1 b) 2X+1<3
c) 3X-7>X d)5X-2>3
11. Tập nghiệm của bpt -4x+1/3x+1≤-3 là?
12. Với X thuộc tập hợp nào thì nhị thức bật nhất f(x)-(x-1)(x+3) không âm?
13. Tập nghiệm S=(-4;5) là tập nghiệm của bpt nào dưới đây:
a)(x+4)(x+5)<0
b)(x+4)(5x-25)<0
c)(x+4)(5x-25)≥0
d) (x-4)(x-5) <0
14. Tổng các tập nghiệm của bpt (x+3)(x-1)≤ 0 là?
GIẢI RA HẾT DÙM EM VỚI Ạ :((