\(\left(x-3\right)\left(x+1\right)\left(2-3x\right)>0.\)
\(x\) | \(-\infty\) \(-1\) \(\dfrac{2}{3}\) \(3\) \(+\infty\) |
\(x-3\) | - | - | - 0 - |
\(x+1\) | - 0 + | + | + |
\(2-3x\) | + | + 0 - | - |
\(\left(x-3\right)\left(x+1\right)\left(2-3x\right).\) | + 0 - 0 + 0 + |
Vậy \(\left(x-3\right)\left(x+1\right)\left(2-3x\right)>0\) khi \(x\in\left(-\infty;-1\right)\cup\left(\dfrac{2}{3};3\right)\cup\left(3;+\infty\right).\)