Δ ABC có AB=6cm, AC=7cm. Gọi E là điểm trên cạnh AB và AE = 1313 AB. Kẻ EF//BC (F ∈ AC).
a, Tính AE
b, Lập các tỉ lệ trên AB và AC
c, Tính AF
Δ ABC có AB=6cm, AC=7cm. Gọi E là điểm trên cạnh AB và AE = \(\dfrac{1}{3}\) AB. Kẻ EF//BC (F ∈ AC).
a, Tính AE
b, Lập các tỉ lệ trên AB và AC
c, Tính AF
a: AE=1/3AB=1/3x6=2(cm)
b: Xét ΔABC có FE//BC
nên AE/AB=AF/AC
c: AE/AB=AF/AC
nên AF/AC=1/3
=>AF/7=1/3
hay AF=7/3(cm)
Cho tam giác ABC vuông tại A có AB = 6cm, BC = 10cm. Kẻ một đường thẳng song song với BC, cắt các cạnh AB và AC tại E và F. Biết AE = 2cm, tính tỉ số đồng dạng của Δ A E F , Δ A B C và độ dài các đoạn cạnh AF, EF
Câu 3(2,0 điểm). Cho ∆ABC nhọn có cạnh AB nhỏ hơn cạnh AC. Trên cạnh AC lấy điểm E sao cho AE = AB, trên tia AB lấy điểm F sao cho AF = AC.
a, Chứng minh AAEF = ∆ABC và EF = BC b, Gọi giao điểm của BC và EF là D, chứng minh AD là tia phân giác của góc BAC
cho tam giác abc có ab =6cm,ac=9 cm gọi e,f lần lượt là các điểm trên ab ,ac .sao cho ae =4cm,af=6cm.a)chứng minh tam giác aef đồng dạng với tam giác abc b) cho EF = 3cm hãy tính BC
Ta có AB/AE = AC/AF
<=> 6/4=9/6=3/2
AEF và ABC chung góc A
=> AEF và ABC đồng dạng "cạnh góc cạnh "
b) BC =3x3/2=4,5cm
`a)` Ta có: `(AE)/(AB) = 4/6 = 2/3`
`(AF)/(AC) = 6/9 = 2/3`
`=> (AE)/(AB) = (AF)/(AC)`
Xét `ΔAEF` và `ΔABC` có:
`hat{A}` chung
`(AE)/(AB) = (AF)/(AC)`
`=> ΔAEF ∼ ΔABC (c - g - c) ` (đpcm)
`b) ` Theo `a) ΔAEF ∼ ΔABC `
`=> (EF)/(BC) = (AF)/(AC)`
`=> 3/(BC) = 2/3`
`=> BC = 3 : 2/3 = 9/2`
Vậy `BC = 9/2cm`
Cho tam giác ABC vuông tại A, biết AB = 6cm, AC = 8cm. Lấy trên cạnh AB, AC lần lượt các điểm E, F sao cho AE = 1,5cm và AF = 2cm.
a) CMR: EF // BC
b) Tính EF?
c) Gọi EC giao FB tại K. CMR: KE. KB = KF. KC
a) Ta có :
\(\frac{AE}{AB}=\frac{1,5}{6}=\frac{1}{4}\)
\(\frac{AF}{AC}=\frac{2}{8}=\frac{1}{4}\)
\(\Rightarrow\frac{AE}{AB}=\frac{AF}{AC}\)
\(\Rightarrow EF//BC\)(Theo định lí Ta-lét đảo)
b)Áp dụng định lí Pythagoras vào △ABC vuông tại A :
BC2 = AB2 + AC2
\(\Rightarrow\)BC2 = 62 + 82
\(\Rightarrow\)BC2 = 100
\(\Rightarrow\)BC = 10 cm
Xét △ABC có : MN // BC
\(\Rightarrow\frac{AE}{AB}=\frac{AF}{AC}=\frac{EF}{BC}\)(Hệ quả định lí Ta-lét)
\(\Rightarrow\frac{EF}{BC}=\frac{1}{4}\)
\(\Rightarrow EF=\frac{1}{4}BC=\frac{1}{4}\cdot10=2,5\left(cm\right)\)
c) Xét △KBC có EF // BC
\(\Rightarrow\frac{KB}{KF}=\frac{KC}{KE}\)(Theo định lí Ta-lét)
\(\Rightarrow KE.KB=KF.KC\)
1. Cho tam giác ABC có: BC// MN, AM= 6cm, MB= 2cm. AN= 7cm. Tính NC.
2. Cho tam giác ABC. Từ điểm M cạnh BC, kẻ các đg thẳng // với cạnh AB và AC. Chúng cắt cạnh AC và AB thứ tự là D và E. Tính tổng AE/AB + AD/AC
3. Cho tam giác ABC, trên AC lấy điểm D sao cho AD/DC= 1/2. M là trung điểm BD. Tia AM cắt BC tại E. Tính tỉ số EC/EB
4. Cho tam giác ABC, trên AB lấy điểm M sao cho 2.MA= MB. Qua M kẻ đg
thằng // với BC cắt AC tại N. Qua N kẻ đường thẳng song song với AB cắt BC tại P. Biết rằng PC= 6cm. Tính BC
Cho tam giác ABC vuông tại A, AB = 6cm, AC = 10cm. Trên cạnh AB lấy điểm D sao cho BD = 2cm. Kẻ DE vuông góc AB ( E thuộc BC). Gọi F là hình chiếu của E trên AC.
1.Cm DF = AE
2. Trên tia FC lấy Q sao cho FQ = DE. Gọi Mlaf giao điểm của DQ và EF. Gọi O là giao điểm AE và DF . Cm OM // AC.
3. Vẽ G sao cho E và C đối xứng với nhau qua G . tính S tam giác OEG
Cho tam giác ABC và các điểm M;N lần lượt là trung điểm của AB và AC . Gọi P là một điểm bất kì trên cạnh BC,đường thẳng đi qua A và song song với BC cắt các đường thẳng PM và PN tại E và F. CM:
a)Δ AME= Δ BMP
b) AF=PC và EF=BC
a: Xét ΔAME và ΔBMP có
\(\widehat{MAE}=\widehat{MBP}\)
AM=BM
\(\widehat{AME}=\widehat{BMP}\)
Do đó: ΔAME=ΔBMP
cho tam giác ABC vuông ở A.Hai cạnh kề với góc vuông là AC dài 12cm và AB =12cm điểm E nằm trên cạnh AC có AE=1/2 AC từ E kẻ đường song song với AB có cạnh BC tại F tính cạnh EF