Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
TRẦN THỊ TUYẾT
Xem chi tiết
Đinh Tuấn Việt
30 tháng 3 2015 lúc 10:10

Vì A là bội của 69 nên A chia hết cho 69.

Phạm Ban Mai
25 tháng 4 lúc 13:35

Phạm Ban Mai
25 tháng 4 lúc 14:52

A không chia hết cho 69

TH
Xem chi tiết
Phạm Ban Mai
25 tháng 4 lúc 9:02

Chứng tỏ A=(1/1.2+1/3.4+1/5.6+...+1/67.68).35.36.37...67.68  chia hết cho 103

(có dấu hiệu "hiệu hai số hạng của tích dưới mẫu bằng tử" ở tổng chuỗi trong ngoặc)

(tách các phần tử trong ngoặc thành 2 phân số)

A=(1/1-1/2+1/3-1/4+1/5-1/6+...+1/67-1/68).35.36.37...67.68

(chuỗi đan xen dấu liên tiếp có thể rút gọn bằng cách thêm bớt như sau:)

(tách thành 2 tổng có mẫu chẵn lẻ, dấu âm dương)

=[(1/1+1/3+1/5+...+1/67)-(1/2+/14+1/6+...+1/68)].35.36.37...67.68

(thêm và bớt 1/2+1/4+1/6+...+1/68 vào tổng ngoặc đơn đầu để được chuỗi liên tiếp, bớt ở ngoặc đơn sau để được 2 lần tổng chuỗi có mẫu chẵn)

 

=[(1/1+1/2+1/3+1/4+1/5+1/6...+1/67+1/68)-2.(1/2+1/4+1/6+...+1/68).35.36.37...67.68 (nhân phân phối 2 vào ngoặc đơn có mẫu chẵn để được chuỗi liên tiếp) =[(1/1+1/2+1/3+1/4+1/5+1/6+...+1/68)-(1/1+1/2+1/3+1/4+1/5+1/6+...+1/34)].35.36.37...67.68 (phá ngoặc, giản ước các cặp số đối) =(1/35+1/36+...+1/67+1/68).35.36.37...67.68  (1) Đến đây cần biến đổi (1) thành tích của 103 nhân với biểu thức có giá trị nguyên, tuy nhiên 103 là số nguyên tố và chuỗi 35.36...67.68 không có phần tử nào là ước của 103. Cần biến đổi tổng thành biểu thức có nhân tử chung là 103 => nhóm một số số hạng lại để xuất hiện 103. Thử tính thấy 35+68=36+67=...=51+52=103 => nhóm theo cặp như sau: (1)=[(1/35+1/68)+(1/36+1/37+...+(1/51+1/52)].35.36.37...67.68 =(\(\dfrac{35+68}{35.68}\)+\(\dfrac{36+67}{36.67}\)+...+\(\dfrac{51+52}{51.52}\)).35.36.37...67.68 =103.(1/35.68+1/36.67+...+1/51.52).35.36.37...67.68 (2) Do chuỗi 35.36.37...67.68 đều chứa các cặp số là tích ở mẫu mỗi phần tử trong tổng chuỗi các phân số tại biểu thức sau 103 nên biểu thức này là một số nguyên => (2) chia hết cho 103 => A chia hết cho 103 (ĐPCM)  
Phạm Ban Mai
25 tháng 4 lúc 9:10

Website hiện thị xuống dòng và công thức quá chán!

Phạm Ban Mai
25 tháng 4 lúc 10:24

Chứng tỏ A=(1/1.2+1/3.4+1/5.6+...+1/67.68).35.36.37...67.68  chia hết cho 103

Có dấu hiệu "hiệu hai số hạng của tích dưới mẫu bằng tử" ở tổng chuỗi trong ngoặc => tách các phần tử trong ngoặc thành 2 phân số

A=(1/1-1/2+1/3-1/4+1/5-1/6+...+1/67-1/68).35.36.37...67.68

Chuỗi đan xen dấu liên tiếp có thể rút gọn bằng cách thêm bớt như sau:

B1: tách thành 2 tổng có mẫu chẵn lẻ, dấu âm dương

=[(1/1+1/3+1/5+...+1/67)-(1/2+/14+1/6+...+1/68)].35.36.37...67.68

B2: thêm và bớt 1/2+1/4+1/6+...+1/68 vào tổng ngoặc đơn đầu để được chuỗi liên tiếp, bớt ở ngoặc đơn sau để được 2 lần tổng chuỗi có mẫu chẵn

=[(1/1+1/2+1/3+1/4+1/5+1/6...+1/67+1/68)-2.(1/2+1/4+1/6+...+1/68).35.36.37...67.68

B3: nhân phân phối 2 vào ngoặc đơn có mẫu chẵn để được chuỗi liên tiếp

=[(1/1+1/2+1/3+1/4+1/5+1/6+...+1/68)-(1/1+1/2+1/3+1/4+1/5+1/6+...+1/34)].35.36.37...67.68

B4: phá ngoặc, giản ước các cặp số đối

=(1/35+1/36+...+1/67+1/68).35.36.37...67.68  (1)

Đến đây cần biến đổi (1) thành tích của 103 nhân với biểu thức có giá trị nguyên, tuy nhiên 103 là số nguyên tố và chuỗi 35.36...67.68 không có phần tử nào là ước của 103.

Cần biến đổi tổng thành biểu thức có nhân tử chung là 103 => nhóm một số số hạng lại để xuất hiện 103. Thử tính thấy 35+68=36+67=...=51+52=103 => nhóm theo cặp như sau:

(1)=[(1/35+1/68)+(1/36+1/37+...+(1/51+1/52)].35.36.37...67.68

=(35+6835.68+36+6736.67+...+51+5251.52).35.36.37...67.68

=103.(1/35.68+1/36.67+...+1/51.52).35.36.37...67.68 (2)

Do chuỗi 35.36.37...67.68 đều chứa các cặp số là tích ở mẫu mỗi phần tử trong tổng chuỗi các phân số tại biểu thức sau 103 nên biểu thức này là một số nguyên

=> (2) chia hết cho 103 => A chia hết cho 103 (ĐPCM)

Rem Ram
Xem chi tiết
Phạm Ban Mai
25 tháng 4 lúc 16:52

Cuber Việt
Xem chi tiết
Nguyễn Thanh Hằng
9 tháng 6 2017 lúc 10:37

Có nhầm lẫn j ko vậy bn??

Thu Đào
Xem chi tiết
HT.Phong (9A5)
11 tháng 8 2023 lúc 13:31

a) Ta có: 

\(10^{10}=10...0\Rightarrow10^{10}-1=10..0-1=9..99\)

Nên \(10^{10}-1\) ⋮ 9

b) Ta có:

\(10^{10}=10...0\Rightarrow10^{10}+2=10..0+2=10..2\)

Mà: \(1+0+0+...+2=3\) ⋮ 3

Nên: \(10^{10}+2\) ⋮ 3

Nguyễn Thùy Dương
Xem chi tiết
Phương Anh (NTMH)
17 tháng 8 2016 lúc 21:37

đề nay mk thấy kì kì sao á bn

 

 

 

 

 

 

 

 

 

 

 

Leo unique
Xem chi tiết
Jin Air
1 tháng 5 2016 lúc 21:28

Gọi 1/1.2 + 1/3.4 + ... + 1/63.64 là B

Ta có:

B= 1/1.2 + 1/3.4 + ... + 1/63.164

B=1-1/2+1/3-1/4+...+1/63-1/64

=1+1/2+1/3+1/4+...+1/63+1/64 - 2.(1/2+1/4+1/6+...+1/64)

=1+1/2+1/3+1/4+...+1/63+1/64-1-1/2-1/3-...-1/32

=1/33+1/34+1/35+...+1/64

=(1/33+1/64)+(1/34+1/63)+...+(1/48+1/49)

=97/33.64 + 97/34.63 + .... + 97/48.49

=97(1/33.64+1/34.63+...+1/48.49)

=97k

Thay vào B vào A ta được

97k.33.34.35...64 chia hết cho 97

 vậy A chia hết 97

l҉o҉n҉g҉ d҉z҉
1 tháng 5 2016 lúc 21:30

Gọi 1/1.2 + 1/3.4 + ... + 1/63.64 là B Ta có: B= 1/1.2 + 1/3.4 + ... + 1/63.164 B=1-1/2+1/3-1/4+...+1/63-1/64 =1+1/2+1/3+1/4+...+1/63+1/64 - 2.(1/2+1/4+1/6+...+1/64) =1+1/2+1/3+1/4+...+1/63+1/64-1-1/2-1/3-...-1/32 =1/33+1/34+1/35+...+1/64 =(1/33+1/64)+(1/34+1/63)+...+(1/48+1/49) =97/33.64 + 97/34.63 + .... + 97/48.49 =97(1/33.64+1/34.63+...+1/48.49) =97k Thay vào B vào A ta được97k.33.34.35...64 chia hết cho 97 vậy A chia hết 97

Vương Nguyên
1 tháng 5 2016 lúc 22:07

Gọi 1/1.2 + 1/3.4 + ... + 1/63.64 là B Ta có: B= 1/1.2 + 1/3.4 + ... + 1/63.164 B=1-1/2+1/3-1/4+...+1/63-1/64 =1+1/2+1/3+1/4+...+1/63+1/64 - 2.(1/2+1/4+1/6+...+1/64) =1+1/2+1/3+1/4+...+1/63+1/64-1-1/2-1/3-...-1/32 =1/33+1/34+1/35+...+1/64 =(1/33+1/64)+(1/34+1/63)+...+(1/48+1/49) =97/33.64 + 97/34.63 + .... + 97/48.49 =97(1/33.64+1/34.63+...+1/48.49) =97k Thay vào B vào A ta được97k.33.34.35...64 chia hết cho 97 vậy A chia hết 97

Jima
Xem chi tiết
shitbo
14 tháng 11 2018 lúc 19:14

Ta có:

a:3(du 2)

a:5(du 4)

a:7(du 6)

=> a=3k+2=5a+4=7b+6 (a,b,c E N)

=> a+1=3k+2+1=5a+4+1=7b+6+1=3k+3=5a+5=7b+7

=> a+1 chia hết cho 3;5;7

honggianghg2
Xem chi tiết