Cho hình vẽ sau, biết AB//CD và AB=CD .Chứng minh rằng MA=MC,MB=MD
Cho hình thang ABCD có A và D bằng 90 độ. Biết rằng AB là đáy nhỏ và AB+CD=AD. Trên AD lấy M sao cho MA=CD và MD=AB. Chứng Minh rằng: MC vuông góc với MD
Sửa đề: Chứng minh MB\(\perp\)MC
Xét ΔABM vuông tại A và ΔDMC vuông tại D có
AB=DM
AM=DC
Do đó: ΔABM=ΔDMC
=>\(\widehat{AMB}=\widehat{DCM}\)
mà \(\widehat{DCM}+\widehat{DMC}=90^0\)
nên \(\widehat{AMB}+\widehat{DMC}=90^0\)
\(\widehat{AMB}+\widehat{BMC}+\widehat{DMC}=180^0\)
=>\(\widehat{BMC}+90^0=180^0\)
=>\(\widehat{BMC}=90^0\)
=>MB\(\perp\)MC
từ điểm M ở ngoài đường tròn(O) , VẼ 2 tiếp tuyến MA, MB và một cát tuyến MCD. gọi I là giao điểm của AB , CD . CHỨNG MINH RẰNG IC/ID=MC/MD
Cho đường tròn (O;R) và một điểm M bên trong đường tròn đó. Qua M kẻ hai dây cung AB và CD vuông góc với nhau (C thuộc cung nhỏ AB)
Vẽ đường kính DE. Chứng minh rằng:
a)MA × MB=MC ×MD.
b) tứ giác ABCE là hình thang cân.
C)MA^2+MB^2+MC^2 + MD^2 có giá trị không đổi khi M thay đổi vị trí trong đường tròn (O).
a) Xét (O;R) có:
\(\widehat{BCD}\)là góc nt chắn cung BC
\(\widehat{BAC}\)là góc nt chắn cung BC
\(\Rightarrow\widehat{BCD}=\widehat{BAC}=sđ\widebat{BC}\)
Vì dây \(AB\perp CD\)tại M nên \(\widehat{M}=90^o\)
Xét \(\Delta ACM\)và \(\Delta DBM\):
\(\hept{\begin{cases}\widehat{AMC}=\widehat{DMB}=90^o\\\widehat{BAC}=\widehat{BCD}\end{cases}}\)
\(\Rightarrow\Delta ACM\infty\Delta DBM\left(gg\right)\)
\(\Rightarrow\frac{AM}{DM}=\frac{MC}{MB}\Rightarrow AM.MB=MC.DM\)
b) Vì \(\Delta ACM\infty DBM\Rightarrow\widehat{ACM}=\widehat{DBM}\)
Xét \(\left(O;R\right):\)
\(\Delta CDE\)nt (O), cạnh DE là đường kính\(\Rightarrow\Delta CDE\)vuông tại C\(\Rightarrow CD\perp CE\Rightarrow\widehat{DCE}=90^o\)
\(\Delta BDE\)nt \(\left(O\right),\)cạnh DE là đường kính\(\Rightarrow\Delta BDE\)vuông tại B\(\Rightarrow\widehat{DBE}=90^o\)
Có\(\widehat{MAC}+\widehat{ACM}=90^o\Rightarrow\widehat{MAC}=90^o-\widehat{ACM}\)
Và \(\widehat{ABE}+\widehat{DBM}=90^o\Rightarrow\widehat{ABE}=90^o-\widehat{DBM}\)
Mà \(\widehat{ACM}=\widehat{DBM}\)\(\Rightarrow\widehat{MAC}=\widehat{ABE}\)
Do \(AB\perp CD,CD\perp CE\Rightarrow AB//CE\)
Xét tg ABCE có:
\(AB//CE\)
\(\widehat{MAC}=\widehat{ABE}\)
\(\Rightarrow Tg\)ABCE là hthang cân
c) Áp dụng đ/lí Pi-ta-go lần lượt vào các \(\Delta AMC,\Delta BCM;\Delta BDM;\Delta ADM;\Delta BDE\)có:
\(AM^2=AC^2-CM^2\)(1)
\(MB^2=BC^2-CM^2\)(2)
\(MC^2=BC^2-BM^2\)(3)
\(MD^2=BD^2-BM^2\)(4)
\(DE^2=BD^2+BE^2\)(5)
Công từng vế của (1)(2)(3)(4) ta đc đẳng thức:
\(MA^2+MB^2+MC^2+MD^2=AC^2-CM^2+BC^2-CM^2+BC^2-BM^2+BD^2-BM^2\)
\(=AC^2+2BC^2-2CM^2-BM^2+BD^2-BM^2\)
\(=AC^2+2BM^2-BM^2+BD^2-BM^2\)(vì \(BM^2=BC^2-CM^2\))
\(=AC^2+BD^2\)
\(=BE^2+BD^2\)(vì AC=BE do ABCE là hthang cân)
\(=DE^2\)(c/m (5))
Mà DE là đường kính của (O) nên DE=2R\(\Rightarrow DE^2=\left(2R\right)^2=4R^2\)
Vậy \(MA^2+MB^2+MC^2+MD^2\)có g/trị ko đổi khi M thay đổi trong (O)
cho tứ giác ABCD và điểm M thuộc đường trong của tứ giác
Chứng minh : a) MA+MB+MC+MD > AB+CD
b) MA+MB+MC+MD \(\ge\dfrac{AB+BC+CD+DA}{2}\)
Hình bạn tự vẽ nhé.
a) Theo bất đẳng thức tam giác:
MA+MB> AB (1)
MC+MD>CD (2)
=> MA +MB +MC +MD >AB +CD
b) Theo BĐT tam giác:
MA+MD > AD (3)
MB +MC >BC (4)
(1)(2)(3)(4) => 2(MA +MB+MC+MD)>AB +BC +CD +AD
MA +MB +MC +MD>AB +BC +CD +AD /2
Mình không nghĩ là dấu≥ vì bất đẳng thức tam giác đâu có dấu bằng đâu nhỉ?
qua M nằm ngoài đtron (O), vẽ 2 tiếp tuyến MA, MB (A, B là tiếp điểm). Trên cung nhỏ AB lấy E sao cho sđAE>sđBE. CD là đường vuông góc với OE tại E (C∈MA; D∈MB).
Chứng minh rằng \(\dfrac{MC}{OA}+\dfrac{MD}{OB}=\dfrac{CD}{OE}\)
giúp em vớiiiii, em cần gấp
Cho đoạn AD có 2 điểm B và C thuộc AD sao cho AB=CD ( cách đều A và D). Điểm M ở ngoài đoạn AD. Chứng minh rằng: MA+MD> MB+MC
cho 2 điểm B và C nằm trên đoạn thẳng AD sao cho AB = CD . Lấy điểm M tùy ý trong mặt phẳng . Chứng minh rằng : MA + MD lớn hơn hoặc = MB + MC
mình trả lời đại k mình nhé
vi B và C nằm trên đoạn thẳng AD cho điểm M tùy ý mình cho M là trung điểm của AD và BC vì B và C nằm trong đoạn AD =>đoạn AD dài hơn đoạn BC. M là trung điểm của cả hai đoạn nên MA+MD sẽ lớn hơn hoặc bằng MB+MC
xin các bạn giúp mình với , mình sẽ k cho các bn , mình đang cần rất gấp
Cho tứ giác ABCD và một điểm M thuộc miền trong của tứ giác . Chứng minh BĐT :
a) MA + MB + MC + MD >= 1/2 *(AB+BC+CD+DA)
b) MA+MB+MC+MD >= AC+BD. Dấu "=" xảy ra khi nào?
a/ Áp dụng BĐT ba điểm :
\(AM+MB\ge AB\) ; \(BM+MC\ge BC\); \(CM+MD\ge CD\) ; \(DM+MA\ge DA\)
Cộng theo vế : \(2\left(MA+MB+MC+MD\right)\ge AB+BC+CD+DA\)
\(\Leftrightarrow MA+MB+MC+MD\ge\frac{AB+BC+CD+DA}{2}\)
Đẳng thức xảy ra khi M là giao điểm của AC và BD
b/ Ta cũng áp dụng BĐT ba điểm :
\(AM+MC\ge AC\) ; \(BM+MD\ge BD\)
Cộng theo vế : \(MA+MB+MC+MD\ge AC+BD\)
Đẳng thức xảy ra khi M là giao điểm của AC và BD
Cho tứ giác ABCD nội tiếp trong đường tròn (O; R) sao cho hai cạnh AB và CD kéo dài cắt nhau tại
M. Gọi I là giao điểm của AC và BD.
1. Chứng minh rằng MA. MB = MC. MD và IA. IC = IB. ID
2. Kẻ cát tuyến MEF đi qua O (E nằm giữa M, F). Chứng minh: MA. MB = ME. MF = OM2 – R2.
3. Kẻ cát tuyến IPQ đi qua O. Chứng minh: IA. IC = IP. IQ = R2 – OI2.