tim x:
a)[2x+3/5]2-9/25=0 b)23/x-5=-47/(-2)x+7
Giải phương trình:
1) (3x-1)^2-5(2x+1)^2+96x-3)(2x+1)=(x-1)^2
2) (x+2)^3-(x-2)^3=12(x-1)-8
3) x-1/4-5-2x/9=3x-2/3
4) 25x-655/95-5(x-12)/209=[89-3x-2(x-13)/5]/11
5) 29-x/21+27-x/23+25-x/25+23-x/27=-4
6) x-69/30+x-67/32=x-63/36+x-61/38
7)x+117/19+x+4/28+x+3/57=0
8) 59-x/41+57-x/43+2=x-55?45+x-53/47-2
9) Cho phương trình: mx+x-m^2=2x-2 (x là ẩn). Tìm m để phương trình:
a) Có nghiệm duy nhất
b) Vô số nghiệm
c) Vô nghiệm
Giải phương trình:
1) (3x-1)^2-5(2x+1)^2+96x-3)(2x+1)=(x-1)^2
2) (x+2)^3-(x-2)^3=12(x-1)-8
3) x-1/4-5-2x/9=3x-2/3
4) 25x-655/95-5(x-12)/209=[89-3x-2(x-13)/5]/11
5) 29-x/21+27-x/23+25-x/25+23-x/27=-4
6) x-69/30+x-67/32=x-63/36+x-61/38
7)x+117/19+x+4/28+x+3/57=0
8) 59-x/41+57-x/43+2=x-55?45+x-53/47-2
9) Cho phương trình: mx+x-m^2=2x-2 (x là ẩn). Tìm m để phương trình:
a) Có nghiệm duy nhất
b) Vô số nghiệm
c) Vô nghiệm
Bài 1 tìm x
l) (x + 9) . (x2 – 25) = 0
e) |x - 4 |< 7
f) 40 < 31 + |x |< 47
g) | x + 3| ≤ 2
m) (-5x + 20).(x3 – 8) = 0
a) (x + 1).(y - 2) = 5
b) (x - 5).(y + 4) = -7
c) (x + 1)2 + (y – 1)2 = 0
d) (2x – 18)2 + ( y + 37)2 = 0
k |x-40|+|x-y+10|_<0
l) (x + 9) . (x2 – 25) = 0
<=> (x + 9) . (x – 5) . (x + 5) = 0
<=> \(\left[{}\begin{matrix}\text{x + 9 = 0}\\x-5=0\\x+5=0\end{matrix}\right.\left[{}\begin{matrix}x=-9\\x=5\\x=-5\end{matrix}\right.\)
Vậy S = \(\left\{-9,5,-5\right\}\)
e) |x - 4 |< 7
<=> \(\left[{}\begin{matrix}x-4=7\\x-4=-7\end{matrix}\right.< =>\left[{}\begin{matrix}x=11\\x=-3\end{matrix}\right.\)
Vậy S = \(\left\{11;-3\right\}\)
I,(x+9).(x^2-25)=0
tương đương:x+9=0
x^2-25=0
tương đương : x=-9
x=5
e,\(\left|x-4\right|\)=7
tương đương x-4=4
x-4=-4
tương đương :x=0
x=-8
Bài 1:
l) Ta có: \(\left(x+9\right)\left(x^2-25\right)=0\)
\(\Leftrightarrow\left(x+9\right)\left(x-5\right)\left(x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+9=0\\x-5=0\\x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-9\\x=5\\x=-5\end{matrix}\right.\)
Vậy: \(x\in\left\{-9;5;-5\right\}\)
e) Ta có: |x-4|<7
mà \(\left|x-4\right|\ge0\forall x\)
nên \(\left|x-4\right|\in\left\{0;1;2;3;4;5;6\right\}\)
\(\Leftrightarrow x-4\in\left\{0;1;-1;2;-2;3;-3;4;-4;5;-5;6;-6\right\}\)
hay \(x\in\left\{4;5;3;6;2;7;1;8;0;9;-1;10;-2\right\}\)
Vậy: \(x\in\left\{4;5;3;6;2;7;1;8;0;9;-1;10;-2\right\}\)
f) Ta có: \(40< 31+\left|x\right|< 47\)
\(\Leftrightarrow\left|x\right|+31\in\left\{41;42;43;44;45;46\right\}\)
\(\Leftrightarrow\left|x\right|\in\left\{10;11;12;13;14;15\right\}\)
hay \(x\in\left\{10;-10;11;-11;12;-12;13;-13;-14;14;15;-15\right\}\)
Vậy: \(x\in\left\{10;-10;11;-11;12;-12;13;-13;-14;14;15;-15\right\}\)
g) Ta có: \(\left|x+3\right|\le2\)
\(\Leftrightarrow\left|x+3\right|\in\left\{0;1;2\right\}\)
\(\Leftrightarrow x+3\in\left\{0;1;-1;2;-2\right\}\)
hay \(x\in\left\{-3;-2;-4;-1;-5\right\}\)
Vậy: \(x\in\left\{-3;-2;-4;-1;-5\right\}\)
a , ( 15 - x ) + ( x - 12 ) = 7 - ( - 5 + x )
b , x - { 57 - [ 42 + ( - 23 - x ) ] } = 13 - { 47 + [ 25 - ( 32 - x ) ] }
c , ( x - 3 ) + ( x - 2 ) + ( x - 1 ) + ... + 10 + 11 = 11
d , x + ( x + 1 ) + ( x + 2 ) + ... + 2003 = 2003
e , ( x² + 3x + 9 ) chia hết ( x + 3 )
g , ( 2x² - 10x + 5 ) chia hết ( x - 5 )
a: \(\left(15-x\right)+\left(x-12\right)=7-\left(x-5\right)\)
=>7-x+5=15-x+x-12
=>12-x=3
hay x=9
b: \(\Leftrightarrow x-\left\{57-\left[42-23-x\right]\right\}=13-\left\{47+25-32+x\right\}\)
\(\Leftrightarrow x-\left\{57-19+x\right\}=13-\left\{40+x\right\}\)
=>x-38-x=13-40-x
=>-27-x=-38
=>x+27=38
hay x=11
e: \(x^2+3x+9⋮x+3\)
\(\Leftrightarrow x\left(x+3\right)+9⋮x+3\)
\(\Leftrightarrow x+3\in\left\{1;-1;9;-9;3;-3\right\}\)
hay \(x\in\left\{-2;-4;6;-12;0;-6\right\}\)
tim x thuoc z
1)26-|x+9|=-13
2)|x+7|-13=25
tim x biet
1)123-3.(x+4)=23
2)720:[41-(2x-5)]=23.5
Tìm x thuoc z:
1) \(26-\left|x+9\right|=-13\)
\(\Leftrightarrow\left|x+9\right|=26-\left(-13\right)\)
\(\Leftrightarrow\left|x+9\right|=39\)
\(\Leftrightarrow\left[{}\begin{matrix}x+9=39\\x+9=-39\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=39-9=30\\x=-39-9=-48\end{matrix}\right.\)
Vậy: \(x\in\left\{30;-48\right\}\)
2) \(\left|x+7\right|-13=25\)
\(\Leftrightarrow\left|x+7\right|=25+13=38\)
\(\Leftrightarrow x+7\in\left\{38;-38\right\}\)
\(\Leftrightarrow x\in\left\{31;-45\right\}\)
Vậy:.................
tim x biet
\(1)123-3.\left(x+4\right)=23\)
\(\Leftrightarrow3\left(x+4\right)=123-23\)
\(\Leftrightarrow3\left(x+4\right)=100\)
\(\Leftrightarrow x+4=\frac{100}{3}\)
\(\Leftrightarrow x=\frac{100}{3}-4=\frac{100-12}{3}=\frac{88}{3}\)
Vậy:................
2) Tương tự
tim so nguyen x
(3x+9).(3x-6)=0(2x+15)-25=47-(10-x)30(x=2)-6(x-5)-24x=100/4-3x/=8/2x-5/=13/7x+3/=661) (3x + 9)(3x - 6) = 0
=> \(\orbr{\begin{cases}3x+9=0\\3x-6=0\end{cases}}\)
=> \(\orbr{\begin{cases}3x=-9\\3x=6\end{cases}}\)
=> \(\orbr{\begin{cases}x=-3\\x=2\end{cases}}\)
Vậy ...
b) (2x + 15) - 25 = 47 - (10 - x)
=> 2x - 10 = 37 + x
=> 2x - x = 37 + 10
=> x = 47
3, tương tự
4) |4 - 3x| = 8
=> \(\orbr{\begin{cases}4-3x=8\\4-3x=-8\end{cases}}\)
=> \(\orbr{\begin{cases}3x=-4\\3x=12\end{cases}}\)
=> \(\orbr{\begin{cases}x=-\frac{4}{3}\\x=4\end{cases}}\)
Vì x là số nguyên nên ...
còn lại tương tự
a) 5(x-2)(x+3)=1
b) 7(x-2024)2 = 23- y2
c) |x2+ 2x| + |y2- 9|= 0
d) 2x+ 2x+1+2x+2+2x+3=120
e) ( x- 7 )x+1- (x - 7)x+11=0
f) 25 - y2= 8(x 2012)2
a: \(5^{\left(x-2\right)\left(x+3\right)}=1\)
=>\(\left(x-2\right)\left(x+3\right)=0\)
=>\(\left[{}\begin{matrix}x-2=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-3\end{matrix}\right.\)
c: \(\left|x^2+2x\right|+\left|y^2-9\right|=0\)
mà \(\left\{{}\begin{matrix}\left|x^2+2x\right|>=0\forall x\\\left|y^2-9\right|>=0\forall y\end{matrix}\right.\)
nên \(\left\{{}\begin{matrix}x^2+2x=0\\y^2-9=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\left(x+2\right)=0\\\left(y-3\right)\left(y+3\right)=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x\in\left\{0;-2\right\}\\y\in\left\{3;-3\right\}\end{matrix}\right.\)
d: \(2^x+2^{x+1}+2^{x+2}+2^{x+3}=120\)
=>\(2^x\left(1+2+2^2+2^3\right)=120\)
=>\(2^x\cdot15=120\)
=>\(2^x=8\)
=>x=3
e: \(\left(x-7\right)^{x+1}-\left(x-7\right)^{x+11}=0\)
=>\(\left(x-7\right)^{x+11}-\left(x-7\right)^{x+1}=0\)
=>\(\left(x-7\right)^{x+1}\left[\left(x-7\right)^{10}-1\right]=0\)
=>\(\left[{}\begin{matrix}x-7=0\\x-7=1\\x-7=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=7\\x=8\\x=6\end{matrix}\right.\)
Bài 1. Tìm x, biết
b) -2x + 36 = 6
a) -5.x + 32 = (-2)3
d) êx - 4 ê< 7
f) 40 < 31 + êx ê< 47
g) | x + 3| ≤ 2
e) (x + 9) . (x2 – 25) = 0
h) (x – 5)2 = 9
Bài 1:
a) Ta có: \(-5x+32=\left(-2\right)^3\)
\(\Leftrightarrow-5x+32=-8\)
\(\Leftrightarrow-5x=-40\)
hay x=8
Vậy: x=8
b) Ta có: \(-2x+36=6\)
\(\Leftrightarrow-2x=6-36=-30\)
hay x=15
Vậy: x=15
e) Ta có: \(\left(x+9\right)\left(x^2-25\right)=0\)
\(\Leftrightarrow\left(x+9\right)\left(x-5\right)\left(x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+9=0\\x-5=0\\x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-9\\x=5\\x=-5\end{matrix}\right.\)
Vậy: \(x\in\left\{-9;5;-5\right\}\)
b,-2x+36=6
tương đương -2x=-30
tương đương x=15
a, -5x+32=(-2)^3
tương đương -5x+32=8
tương đương -5x=-24
tương đương x=24/5
Tim x,biết:
a,15 - 5.(x + 4) = - 12 - 3
b, ( 7 - x ) - ( 25 + 7) = - 25
c, | x + 2 | = 0
d, | x + 3 | + 7 - ( - 2)
e, | x - 5| = | - 7 |
g, - x - 20-(8 - 2x) = (-12-3)
a) <=> 15-5x-20=-12-3
<=> -5x=-12-3-15+20=-10
=>x=-10:(-5)=2
b)<=>7-x-25-7=-25
<=> -x=-25-7+25+7=0 =>x=0
c) /x+2/=0 => x+2=0 =>x=-2
d) sai đề
e)<=> /x-5/ = 7
<=> \(\orbr{\begin{cases}x-5=7\\x-5=-7\end{cases}}\)
<=> \(\orbr{\begin{cases}x=12\\x=-2\end{cases}}\)
g) <=> -x-20-8+2x=-15
<=> x=-15+20+8=13