Tìm x, y. Biết x : y = \(\frac{3}{4}\)
Gợi ý: (x + 60) : (y + 60) = \(\frac{9}{10}\)
Câu 1Tính giá trị biểu thức A biết
A=\(\frac{4+\frac{5}{6}-\frac{1}{9}}{10-\frac{7}{12}+\frac{1}{16}}-\frac{3-\frac{1}{5}+\frac{1}{3}-\frac{1}{9}}{9-\frac{3}{5}+1-\frac{1}{3}}\)
Câu 3 : Tìm x biết : 2016.x+x.\(\frac{1}{2016}\)-2016=\(\frac{1}{2016}\)
Câu 4 : Tìm tất cả các cặp số nguyên x,y biết rằng : (x-y).(y+3)2=9
Tìm x,y,z biết :
\(\frac{3x}{4}=\frac{5}{y}=\frac{6z}{11}\) và X-Y+Z= -262
\(\frac{x}{3}=\frac{y}{4}=\frac{z}{10}\)và x+y+z=1080
Tìm x,y,z biết
\(\frac{x}{2}\)= \(\frac{y}{3}\); \(\frac{y}{2}\)= \(\frac{z}{3}\)và x-2y +3z=19
\(\frac{x}{1}\)= \(\frac{y}{4}\);\(\frac{y}{3}\)=\(\frac{z}{4}\)và 4x +y-z=16
x:y:z=3:5:(-2) và 5x-y+3z=124
\(\frac{x}{y}\)=\(\frac{17}{3}\)và x+y=-60
Ta có: \(\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{4}=\frac{y}{6}\)
\(\frac{y}{2}=\frac{z}{3}\Rightarrow\frac{y}{6}=\frac{x}{9}\)
\(\Rightarrow\frac{x}{4}=\frac{y}{6}=\frac{z}{9}\Rightarrow\frac{x}{4}=\frac{2y}{12}=\frac{3z}{27}\)
Áp dụng t/c dãy tỉ số bằng nhau ,ta được:
\(\frac{x}{4}=\frac{y}{6}=\frac{z}{9}=\frac{x}{4}=\frac{2y}{12}=\frac{3z}{27}=\frac{x-2y+3z}{4-12+27}=1\)
Do đó: x=4
y=6
z=9
Vậy......
b) Vì \(\frac{x}{1}=\frac{y}{4}\Rightarrow\frac{x}{3}=\frac{y}{12}\)
\(\frac{y}{3}=\frac{z}{4}\Rightarrow\frac{y}{12}=\frac{z}{16}\)
\(\Rightarrow\frac{x}{3}=\frac{y}{12}=\frac{z}{16}\)
\(\Rightarrow\frac{4x}{12}=\frac{y}{12}=\frac{z}{16}\)
Áp dụng tc của dãy tỉ số bằng nhau ta có:
\(\frac{4x}{12}=\frac{y}{12}=\frac{z}{16}=\frac{4x+y-z}{12+12-16}=\frac{16}{8}=2\)
\(\Rightarrow\hept{\begin{cases}x=2.3=6\\y=2.12=24\\z=2.16=32\end{cases}}\)
Vậy
c) Vì \(x:y:z=3:5:\left(-2\right)\)
\(\Rightarrow\frac{x}{3}=\frac{y}{5}=\frac{z}{-2}\)
\(\Rightarrow\frac{5x}{15}=\frac{y}{5}=\frac{3z}{-6}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{5x}{15}=\frac{y}{5}=\frac{3z}{-6}=\frac{5x-y+3z}{15-5-6}=\frac{124}{4}=31\)
\(\Rightarrow\hept{\begin{cases}x=31.3=93\\y=31.5=155\\z=31.\left(-2\right)=-62\end{cases}}\)
Vậy ...
tìm 3 số x,y,z biết rằng:
\(\frac{x}{2}=\frac{y}{3},\frac{y}{4}=\frac{z}{5}\) và x+y-z=10
ta có: \(\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{8}=\frac{y}{12}\)
\(\frac{y}{4}=\frac{z}{5}\Rightarrow\frac{y}{12}=\frac{z}{15}\)
\(\Rightarrow\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\)
ADTCDTSBN
có: \(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{x+y-z}{8+12-15}=\frac{10}{5}=2\)
\(\Rightarrow\frac{x}{8}=2\Rightarrow x=16\)
y/12 = 2 => y = 24
z/15 = 2 => z = 30
KL: x = 16; y=24;z=30
Ta có :
\(\frac{x}{2}=\frac{y}{3}\)\(\Rightarrow\)\(\frac{x}{8}=\frac{y}{12}\)
\(\frac{y}{4}=\frac{z}{5}\)\(\Rightarrow\)\(\frac{y}{12}=\frac{z}{15}\)
Suy ra : \(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{x+y-z}{8+12-15}=\frac{10}{5}=2\)
Do đó :
\(\frac{x}{8}=2\)\(\Rightarrow\)\(x=2.8=16\)
\(\frac{y}{12}=2\)\(\Rightarrow\)\(y=2.12=24\)
\(\frac{z}{15}=2\)\(\Rightarrow\)\(z=2.15=30\)
Vậy \(x=16\)\(;\)\(y=24\) và \(z=30\)
Chúc bạn học tốt ~
Ta có: \(\orbr{\begin{cases}\frac{x}{2}=\frac{y}{3}\\\frac{y}{4}=\frac{z}{5}\end{cases}\Rightarrow\orbr{\begin{cases}\frac{x}{8}=\frac{y}{12}\\\frac{y}{12}=\frac{z}{15}\end{cases}\Rightarrow}\frac{x}{8}=\frac{y}{12}=\frac{z}{15}}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{8}=\frac{y}{12}=\frac{z}{13}=\frac{x+y-z}{8+12-15}=\frac{10}{5}=2\)
\(\Rightarrow\) \(\frac{x}{8}=2\Rightarrow x=16\)
\(\frac{y}{12}=2\Rightarrow y=24\)
\(\frac{z}{15}=2\Rightarrow z=30\)
KL:................
bài 6 . tìm 3 số x, y,z,biết rằng
\(\frac{x}{2}=\frac{y}{3},\frac{y}{4}=\frac{z}{5}\)và x + Y - Z = 10
\(\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{8}=\frac{y}{12}\)
\(\frac{y}{4}=\frac{z}{5}\Rightarrow\frac{y}{12}=\frac{z}{15}\)
\(\Rightarrow\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{x+y-z}{8+12-15}=\frac{10}{5}=2\)
\(\Rightarrow\hept{\begin{cases}x=16\\y=24\\z=30\end{cases}}\)
Tìm x,y biết: \(\frac{5x-4}{9}=\frac{2y+16}{6}=\frac{5x-2y-20}{\frac{3}{8}x}\)
Tìm x;y biết
\(\orbr{\begin{cases}x.\left(x-y\right)=\frac{3}{10}\\y.\left(x-y\right)=\frac{-3}{50}\end{cases}}\)
\(x\left(x-y\right)-y\left(x-y\right)=\frac{3}{10}-\left(-\frac{3}{50}\right)\)
\(\Leftrightarrow\left(x-y\right)^2=\frac{9}{25}\)
\(\Rightarrow\orbr{\begin{cases}x-y=\frac{3}{5}\\x-y=-\frac{3}{5}\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{3}{5}+y\\x=y-\frac{3}{5}\end{cases}}}\)
Với \(x=\frac{3}{5}+y\Rightarrow x\left(x-y\right)=\left(\frac{3}{5}+y\right).\frac{3}{5}=\frac{3}{10}\)
\(\Rightarrow y=-\frac{1}{10}\)
\(\Rightarrow x=\frac{1}{2}\)
Với \(x=y-\frac{3}{5}\Rightarrow x\left(x-y\right)=x\left(y-\frac{3}{5}-y\right)=-\frac{3}{50}\)
\(\Leftrightarrow x.\left(-\frac{3}{5}\right)=-\frac{3}{50}\Rightarrow x=\frac{1}{10}\)
\(\Rightarrow y=\frac{7}{10}\)
Vậy \(x=\frac{1}{2};y=-\frac{1}{10}\)hoặc \(x=\frac{1}{10};y=\frac{7}{10}\)
1. Tìm \(x,\:y,\:z\:\) biết:
\(\frac{x}{3}=\frac{y}{4};\:\frac{y}{3}=\frac{z}{5}\) và
2x\(-3y+z=6\)
2. Tìm x,y biết:
5x=2y và x.y=40
Bài 1: Tìm x, y, z
\(\frac{x}{3}=\frac{y}{4}=>\frac{x}{3\times3}=\frac{y}{4\times3}=>\frac{x}{9}=\frac{y}{12}\)
\(\frac{y}{3}=\frac{z}{5}=>\frac{y}{3.4}=\frac{z}{5.4}=>\frac{y}{12}=\frac{z}{20}\)
=> \(\frac{x}{9}=\frac{y}{12}=\frac{z}{20}\)
- Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{9}=\frac{y}{12}=\frac{z}{20}\) -> \(\frac{2x}{2\times9}=\frac{3y}{3\times12}=\frac{z}{20}\) -> \(\frac{2x}{18}=\frac{3y}{36}=\frac{z}{20}\)
-> \(\frac{2x-3y+z}{18-36+20}=\frac{6}{2}=3\)
\(\frac{x}{9}=3\rightarrow x=27\)
\(\frac{y}{12}=3\rightarrow y=36\)
\(\frac{z}{20}=3\rightarrow z=60\)
Vậy x = 27 ; y = 36 ; z = 60
Bài 2 : Tìm x, y:
5x = 2y và x.y = 40
Vì 5x = 2y => \(\frac{x}{2}=\frac{y}{5}\)
Cách 1:
\(\frac{x}{2}=\frac{y}{5}\) và x.y = 40
Đặt \(\frac{x}{2}=\frac{y}{5}\) = k
=> x = 2.k ; y = 5.k
x.y = 40 -> 2k = 5k = 40
-> 10 . \(k^2\) = 40
-> \(k^2\) = 4 -> k = 2 hoặc k = -2
k = 4 ta có : \(\frac{x}{2}=\frac{y}{5}=2->x=4;y=10\)
k = -4 ta có : \(\frac{x}{2}=\frac{y}{5}=-2->x=-4;y=-10\)
Cách 2:
\(\frac{x}{2}=\frac{y}{5}->\frac{x.x}{2}=\frac{x.y}{5}->\frac{x^2}{2}=\frac{40}{5}=\frac{x^2}{2}=8\)
=> \(x^2\) = 8 . 2 = 16 -> x = 4 hoặc -4
x = 4 -> 4.y = 40 => y = 10
x = -4 -> (-4).y = 40 => y = -10
Vậy x = 4 hoặc -4
y = 10 hoặc -10
\(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{9}=\frac{y}{12}\left(1\right)\\\frac{y}{3}=\frac{z}{5}\Rightarrow\frac{y}{12}=\frac{z}{15}\left(2\right)\)
Từ (1),(2) suy ra \(\frac{x}{9}=\frac{y}{12}=\frac{z}{15}\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\frac{x}{9}=\frac{y}{12}=\frac{z}{15}=\frac{2x}{18}=\frac{-3y}{-36}=\frac{z}{15}=\frac{2x-3y+z}{18-\left(-36\right)+15}=\frac{6}{69}=\frac{2}{23}\)Suy ra x =\(\frac{2}{23}\cdot9=\frac{18}{23}\)
\(y=\frac{2}{23}\cdot12=\frac{24}{23}\\ z=\frac{2}{23}.15=\frac{30}{23}\)
\(1.\)
\(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{9}=\frac{y}{12}\left(1\right)\)
\(\frac{y}{3}=\frac{z}{5}\Rightarrow\frac{y}{12}=\frac{z}{20}\) \(\left(2\right)\)
Từ (1) và (2) \(\Rightarrow\) \(\frac{x}{9}=\frac{y}{12}=\frac{z}{20}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{x}{9}=\frac{y}{12}=\frac{z}{20}=\frac{2x}{18}=\frac{3y}{36}=\frac{2x-3y+z}{18-36+20}=\frac{6}{2}=3\)
\(\frac{x}{9}=3\Rightarrow x=3.9=27\)
\(\frac{y}{12}=3\Rightarrow y=3.12=36\)
\(\frac{z}{20}=3\Rightarrow z=3.20=60\)
Vậy x = 27; y = 36 và z = 60
Tìm x;y;z biết:
\(x+y=\frac{1}{2};y+z=\frac{1}{3};z+x=\frac{1}{4}\)
\(x+y-y-z+z+x=\frac{1}{2}-\frac{1}{3}+\frac{1}{4}\)
\(\Rightarrow2x=\frac{5}{12}\)
\(\Rightarrow x=\frac{5}{12}:2\)
\(\Rightarrow x=\frac{5}{24}\)
Có x rồi bạn thế vào => ra được y rồi thế y vòa => được z