Cho hình thang ABCD (AB // CD), các đường chéo cắt nhau tại O. Chứng minh; OA.OD = OB. OC
Cho hình thang ABCD có hai đáy là AB và CD, các đường chéo cắt nhau tại O. Chứng minh O A . O D = O B . O C .
Vì AB//CD, áp dụng định lý Ta-lét, ta có: O A O C = O B O D
Từ đó suy ra ĐPCM
Cho hình thang ABCD có hai đáy là AB và CD, các đường chéo cắt nhau tại O. Chứng minh: OA.OD = OB.OC
Xét tam giác OAB và tam giác OCD ta có :
^AOB = ^COD ( đối đỉnh )
^OAB = ^OCD ( so le trong )
Vậy tam giác OAB ~ tam giác OCD ( g.g )
=> OA/OC = OB/OD => OA.OD = OC.OB
Vì AB//CD nên:
\(\dfrac{OA}{OC}=\dfrac{OB}{OD}\) ( hệ quả đl ta-lét)
từ đó suy ra : OA.OD=OB.OC(đpcm)
Bài 2: a, Cho hình thang ABCD (AB // CD). Một đường thẳng song song với hai đáy, cắt các cạnh bên AD và BC tại E, F. Tính FC biết AE = 4cm; ED = 2cm; BF = 6cm.
b, Cho hình thang ABCD (AB // CD), các đường chéo cắt nhau tại O.
Chứng minh rằng: OA.OD = OB. OC
giúp mik zới các pạn ơi, nhanh nha
: Cho hình thang ABCD cân có AB // CD và AB < CD. Kẻ các đường cao AE, BF.
a. Chứng minh rằng: DE = CF.
b. Gọi I là giao điểm của 2 đường chéo hình thang ABCD. Chứng minh: IA = IB.
c. Tia DA và tia CB cắt nhau tại O. Chứng minh OI vừa là trung trực của AB vừa là trung trực của DC.
d) Tính các góc của hình thang ABCD nếu biết ˆABC−ˆADC=80
a: Xét ΔAED vuông tại E và ΔBFC vuông tại F có
AD=BC
\(\widehat{ADE}=\widehat{BCF}\)
Do đó: ΔAED=ΔBFC
Suy ra: DE=CF
b: Xét ΔBAD và ΔABC có
AB chung
AD=BC
BD=CA
Do đó: ΔBAD=ΔABC
Suy ra: \(\widehat{DBA}=\widehat{CAB}\)
hay \(\widehat{IAB}=\widehat{IBA}\)
Xét ΔIAB có \(\widehat{IAB}=\widehat{IBA}\)
nên ΔIAB cân tại I
hay IA=IB
Bài 1:
Cho hình thang ABCD cân có AB//CD và AB<CD. Kẻ các đường cao AE,BF.
a) Chứng minh rằng: DE=CF.
b) Gọi I là giao điểm của 2 đường chéo hình thang ABCD. Chứng minh: IA=IB.
c) Tia DA và tia CB cắt nhau tại O. Chứng minh OI vừa là trung trực của AB vừa là trung trực của DC.
d) Tính các góc của hình thang ABCD nếu biết \(\widehat{ABC}-\widehat{ADC}=80^0\)
a) Xét ΔADE vuông tại E và ΔBCF vuông tại F có
AD=BC(ABCD là hình thang cân)
\(\widehat{ADE}=\widehat{BCF}\)(ABCD là hình thang cân)
Do đó: ΔADE=ΔBCF(Cạnh huyền-góc nhọn)
Suy ra: DE=CF(Hai cạnh tương ứng)
b) Xét ΔADB và ΔBCA có
AD=BC(ABCD là hình thang cân)
AB chung
DB=CA(ABCD là hình thang cân)
Do đó: ΔADB=ΔBCA(c-c-c)
Suy ra: \(\widehat{DBA}=\widehat{CAB}\)(hai góc tương ứng)
hay \(\widehat{IAB}=\widehat{IBA}\)
Xét ΔIAB có \(\widehat{IAB}=\widehat{IBA}\)(cmt)
nên ΔIAB cân tại I(Định lí đảo của tam giác cân)
Suy ra: IA=IB
c) Ta có: \(\widehat{OAB}=\widehat{ODC}\)(hai góc đồng vị, AB//CD)
\(\widehat{OBA}=\widehat{OCD}\)(hai góc đồng vị, AB//CD)
mà \(\widehat{ODC}=\widehat{OCD}\)(ABCD là hình thang cân)
nên \(\widehat{OAB}=\widehat{OBA}\)
Xét ΔOAB có \(\widehat{OAB}=\widehat{OBA}\)(cmt)
nên ΔOAB cân tại O(Định lí đảo của tam giác cân)
Suy ra: OA=OB
Ta có: OA+AD=OD(A nằm giữa O và D)
OB+BC=OC(B nằm giữa O và C)
mà OA=OB(cmt)
và AD=BC(ABCD là hình thang cân)
nên OD=OC
Ta có: IA+IC=AC(I nằm giữa A và C)
IB+ID=BD(I nằm giữa B và D)
mà IA=IB(cmt)
và AC=BD(cmt)
nên IC=ID
Ta có: OA=OB(cmt)
nên O nằm trên đường trung trực của AB(1)
Ta có: IA=IB(cmt)
nên I nằm trên đường trung trực của AB(2)
Ta có: OD=OC(cmt)
nên O nằm trên đường trung trực của DC(3)
Ta có: ID=IC(cmt)
nên I nằm trên đường trung trực của DC(4)
Từ (1) và (2) suy ra OI là đường trung trực của AB
Từ (3) và (4) suy ra OI là đường trung trực của DC
Bài 1: Cho hình thang ABCD ( AB // CD), đường chéo AC và BD cắt nhau tại O. Đường thẳng qua O và song song với AB cắt các cạnh bên AD, BC lần lượt tại M, N.
1. Chứng minh: OM = ON 2. Chứng minh: (AM/AD)+(CN/CB)=1
Bạn tự vẽ hình nhé
Xét \(\Delta ACD\) có OE // CD(gt)
=> \(\dfrac{OE}{DC}=\dfrac{AO}{AC}\left(1\right)\)
Xét \(\Delta BCD\) có OF // CD (gt)
=> \(\dfrac{OF}{DC}=\dfrac{BF}{FC}\left(2\right)\)
Mặt khác AB // CD nên \(\dfrac{AO}{AC}=\dfrac{BF}{FC}\left(3\right)\)
Từ \(\left(1\right),\left(2\right),\left(3\right)\)
=> \(\dfrac{OE}{DC}=\dfrac{OF}{DC}\) => OE = OF
Cho hình thang ABCD ( AB // CD), đường chéo AC và BD cắt nhau tại O. Đường thẳng qua O và song song với AB cắt các cạnh bên AD, BC lần lượt tại M, N. 1. Chứng minh: OM = ON 2. Chứng minh: (AM/AD)+(CN/CB)=1
Cho hình thang ABCD co hai đường chéo cắt nhau tại O. Đường thẳng qua O song song với AB cắt AD tại M và AD tại N.
Chứng minh 1/AB +1/CD=2/MN
Xét ΔADC có OM//DC
nên OM/DC=AM/AD
Xét ΔBDC có ON//DC
nên ON/DC=BN/BC
Xét hình thang ABCD có MN//AB//CD
nên AM/AD=BN/BC
=>OM/DC=ON/DC
=>OM=ON
=>MN=2OM
OM//AB
=>OM/AB=DM/DA
OM//DC
=>OM/DC=AM/AD
=>OM/DC+OM/AB=DM/DA+AM/AD=1
=>1/AB+1/CD=1/OM
mà OM=1/2MN
nên 1/AB+1/CD=2/MN