Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
10 tháng 10 2017 lúc 8:18

Vì AB//CD, áp dụng định lý Ta-lét, ta có: O A O C   =   O B O D  

Từ đó suy ra ĐPCM

Jang đzai :33
Xem chi tiết
Nguyễn Huy Tú
7 tháng 2 2022 lúc 16:20

Xét tam giác OAB và tam giác OCD ta có : 

^AOB = ^COD ( đối đỉnh ) 

^OAB = ^OCD ( so le trong ) 

Vậy tam giác OAB ~ tam giác OCD ( g.g ) 

=> OA/OC = OB/OD => OA.OD = OC.OB 

Đỗ Tuệ Lâm
7 tháng 2 2022 lúc 16:20

Vì AB//CD nên:

\(\dfrac{OA}{OC}=\dfrac{OB}{OD}\)  ( hệ quả đl ta-lét)

từ đó suy ra : OA.OD=OB.OC(đpcm)

Khánh Chi Trần
Xem chi tiết
Đức Duy Trần
Xem chi tiết
Đức Duy Trần
17 tháng 8 2021 lúc 10:30

d) Tính các góc của hình thang ABCD nếu biết ˆABC−ˆADC=80

 

Nguyễn Lê Phước Thịnh
17 tháng 8 2021 lúc 13:17

a: Xét ΔAED vuông tại E và ΔBFC vuông tại F có 

AD=BC

\(\widehat{ADE}=\widehat{BCF}\)

Do đó: ΔAED=ΔBFC

Suy ra: DE=CF

b: Xét ΔBAD và ΔABC có

AB chung

AD=BC

BD=CA

Do đó: ΔBAD=ΔABC

Suy ra: \(\widehat{DBA}=\widehat{CAB}\)

hay \(\widehat{IAB}=\widehat{IBA}\)

Xét ΔIAB có \(\widehat{IAB}=\widehat{IBA}\)

nên ΔIAB cân tại I

hay IA=IB

ngọc hân
Xem chi tiết
Nguyễn Lê Phước Thịnh
28 tháng 7 2021 lúc 11:49

a) Xét ΔADE vuông tại E và ΔBCF vuông tại F có 

AD=BC(ABCD là hình thang cân)

\(\widehat{ADE}=\widehat{BCF}\)(ABCD là hình thang cân)

Do đó: ΔADE=ΔBCF(Cạnh huyền-góc nhọn)

Suy ra: DE=CF(Hai cạnh tương ứng)

b) Xét ΔADB và ΔBCA có 

AD=BC(ABCD là hình thang cân)

AB chung

DB=CA(ABCD là hình thang cân)

Do đó: ΔADB=ΔBCA(c-c-c)

Suy ra: \(\widehat{DBA}=\widehat{CAB}\)(hai góc tương ứng)

hay \(\widehat{IAB}=\widehat{IBA}\)

Xét ΔIAB có \(\widehat{IAB}=\widehat{IBA}\)(cmt)

nên ΔIAB cân tại I(Định lí đảo của tam giác cân)

Suy ra: IA=IB

 

Nguyễn Lê Phước Thịnh
28 tháng 7 2021 lúc 11:50

c) Ta có: \(\widehat{OAB}=\widehat{ODC}\)(hai góc đồng vị, AB//CD)

\(\widehat{OBA}=\widehat{OCD}\)(hai góc đồng vị, AB//CD)

mà \(\widehat{ODC}=\widehat{OCD}\)(ABCD là hình thang cân)

nên \(\widehat{OAB}=\widehat{OBA}\)

Xét ΔOAB có \(\widehat{OAB}=\widehat{OBA}\)(cmt)

nên ΔOAB cân tại O(Định lí đảo của tam giác cân)

Suy ra: OA=OB

Ta có: OA+AD=OD(A nằm giữa O và D)

OB+BC=OC(B nằm giữa O và C)

mà OA=OB(cmt)

và AD=BC(ABCD là hình thang cân)

nên OD=OC

Ta có: IA+IC=AC(I nằm giữa A và C)

IB+ID=BD(I nằm giữa B và D)

mà IA=IB(cmt)

và AC=BD(cmt)

nên IC=ID

Ta có: OA=OB(cmt)

nên O nằm trên đường trung trực của AB(1)

Ta có: IA=IB(cmt)

nên I nằm trên đường trung trực của AB(2)

Ta có: OD=OC(cmt)

nên O nằm trên đường trung trực của DC(3)

Ta có: ID=IC(cmt)

nên I nằm trên đường trung trực của DC(4)

Từ (1) và (2) suy ra OI là đường trung trực của AB

Từ (3) và (4) suy ra OI là đường trung trực của DC

Hoàng Long Nguyễn
Xem chi tiết
Kamato Heiji
Xem chi tiết
Huỳnh Quang Sang
14 tháng 3 2021 lúc 15:59

Bạn tự vẽ hình nhé

Xét \(\Delta ACD\) có OE // CD(gt)

=> \(\dfrac{OE}{DC}=\dfrac{AO}{AC}\left(1\right)\)

Xét \(\Delta BCD\) có OF // CD (gt)

=> \(\dfrac{OF}{DC}=\dfrac{BF}{FC}\left(2\right)\)

Mặt khác AB // CD nên  \(\dfrac{AO}{AC}=\dfrac{BF}{FC}\left(3\right)\)

Từ \(\left(1\right),\left(2\right),\left(3\right)\)

=> \(\dfrac{OE}{DC}=\dfrac{OF}{DC}\) => OE = OF

 

MinhAnh NT
Xem chi tiết
Quang Nguyễn Trần Nhật
Xem chi tiết
Nguyễn Lê Phước Thịnh
7 tháng 8 2023 lúc 12:21

Xét ΔADC có OM//DC

nên OM/DC=AM/AD

Xét ΔBDC có ON//DC

nên ON/DC=BN/BC

Xét hình thang ABCD có MN//AB//CD

nên AM/AD=BN/BC

=>OM/DC=ON/DC

=>OM=ON

=>MN=2OM

OM//AB

=>OM/AB=DM/DA

OM//DC

=>OM/DC=AM/AD

=>OM/DC+OM/AB=DM/DA+AM/AD=1

=>1/AB+1/CD=1/OM

mà OM=1/2MN

nên 1/AB+1/CD=2/MN