Cho tam giác ABC cân tại A. AH vuông góc với BC (H thuộc BC), điểm D thuộc BC (D khác H). Chứng minh AH < AD < AB.
Cho tam giác ABC cân tại A. Gọi H là chân đường vuông góc kẻ từ A đến BC, điểm D thuộc cạnh BC (D khác H). Chứng minh AH < AD < AB?
Cho tam giác ABC cân tại A. Gọi H là chân đường vuông góc kẻ từ A đến BC, điểm D thuộc cạnh BC (D khác H). Chứng minh AH < AD < AB?
cho tam giác abc vuông tại A(AB<AC) vẽ AH vuông góc BC(H thuộc BC) D là điểm trên cạnh AC sao cho AD = AB Vẽ DE vuông góc với BC (E thuộc BC) DK vuông góc với AH tại K Chứng minh
a, AH = DK
b, Tam giác AHE vuông cân
Cho Tam giác ABC vuông tại A có AB <AC . Vẽ AH vuông góc với BC (H thuộc BC ),D là điểm trên cạnh AC sao cho AD = AB . Vẽ DE vuông góc với BC (E thuộc BC ) . Chứng minh rằng : Tam giác HAE vuông cân
Cho tam giác ABC cân tại A. Kẻ AH vuông góc với BC(H thuộc BC) .Từ H kẻ HD vuông góc AB(D thuộc BC),từ H kẻ HE vuông góc AC(E thuộc AC) .chứng minh tam giác HED là tam giác cân
1.Cho tam giác ABC có AB=AC=5cm;BC=8cm.Kẻ AH vuông BC (H thuộc BC)
a/ Chứng minh HB=HC và góc BAH=góc CAH
b/ Tính độ dài AH
c/ Kẻ HD vuôngAB (D thuộc AB);HE vuông AC ( E thuộc AC ). Chứng minh rằng :Tam giác HDE cân
2.Cho tam giác ABC cân tại A ,kẻ AH vuông BC (H thuộc BC )
a/ Chưng minh BAH =CAH
b/ Cho AH = 3cm, BC = 8cm .Tính độ dài AC
c/ Kẻ HE vuông AB , HD vuông AC . Chứng minhAE=AD
d/ Chứng minh ED//BC
Xét 2 tam giác ΔAHB và ΔAHC có:
cạnh AH chung
AHB^=AHC^=90∘ (do AH ⊥ BC)
AB=AC
suy ra ΔAHB=ΔAHC (cạnh huyền- cạnh góc vuông)
⇒BH=CH và BAH^=CAH^
Cho tam giác ABC vuông tại A. Kẻ AH vuông góc với BC ( H thuộc BC). Tia phân giác ^HAC cắt BC tại D. Lấy điểm E trên cạnh AB sao cho BE=BH.a, Chứng minh rằng: Δ BAD cân tại B.b, Chứng minh rằng: EH // AD
Cho tam giác ABC cân tại A có AB = AC = 5cm, kẻ AH vuông góc với BC (H thuộc BC).
a) Chứng minh: BH = HC và góc BAH = góc CAH
b) Tính độ dài BH biết AH = 4cm.
c) Kẻ HD vuông góc với AB (D thuộc AB), kẻ EH vuông góc với AC (E thuộc AC). Tam giác ADE là tam giác gì ? Vì sao ?
a: ΔABC cân tại A
mà AH là đường cao
nên H là trung điểm của BC và AH là phân giác của góc BAC
=>góc BAH=góc CAH
b: \(BH=\sqrt{5^2-4^2}=3\left(cm\right)\)
c: Xét ΔADH vuông tại D và ΔAEH vuông tại E có
AH chung
góc DAH=góc EAH
Do đó: ΔADH=ΔAEH
=>AD=AE
=>ΔADE cân tại A
Cho tam giác ABC cân có AB=AC=5cm, BC= 8cm.Kẻ AH vuông góc với BC ( H thuộc BC). a, Chứng minh HB=HC b, Tính độ dài AH. c, Kẻ HD vuông góc với AB(D thuộc AB), kẻ HE vuông góc với AC ( E thuộc AC).Chứng minh tam giác HDE cân. d, CM: AH là đường trung trực của đoạn thẳng DE ( giúp mk vs mai mk phải nộp rồi)
a.ta có trong tam giác cân ABC đường cao cũng là đường trung tuyến => HB = HC
b.áp dụng định lý pitago ta có:
\(AB^2=AH^2+HB^2\)
\(5^2=AH^2+\left(8:2\right)^2\)
\(AH=\sqrt{5^2-4^2}=3cm\)
c.Xét tam giác vuông BHD và tam giác vuông CHE, có:
BH = CH ( cmt )
góc B = góc C ( ABC cân )
Vậy tam giác vuông BHD = tam giác vuông CHE
=> HD = HE
=> HDE cân tại H
d.ta có AB = AD + DB
AC = AE + EC
Mà BD = CE ( 2 cạnh tương ứng của 2 tam giác bằng nhau )
=> AD = AE
=> ADE cân tại A
Mà A là đường cao cũng là đường trung trực trong tam giác cân ABC cũng là đường trung trực của tam giác cân ADE ( cmx )
Chúc bạn học tốt !!!!