Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Tuyết Ly
Xem chi tiết
ILoveMath
3 tháng 3 2022 lúc 20:56

\(a,3x^2+5x+2=0\\ \Leftrightarrow\left(3x^2+3x\right)+\left(2x+2\right)=0\\ \Leftrightarrow3x\left(x+1\right)+2\left(x+1\right)=0\\ \Leftrightarrow\left(3x+2\right)\left(x+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{2}{3}\\x=-1\end{matrix}\right.\)

b, ĐKXĐL\(x\ne\pm\dfrac{2}{3}\)

\(\dfrac{3x+2}{3x-2}-\dfrac{6}{2+3x}=\dfrac{9x^2}{9x^2-4}\\ \Leftrightarrow\dfrac{\left(3x+2\right)^2}{\left(3x+2\right)\left(3x-2\right)}-\dfrac{6\left(3x-2\right)}{\left(3x+2\right)\left(3x-2\right)}-\dfrac{9x^2}{\left(3x+2\right)\left(3x-2\right)}=0\\ \Leftrightarrow\dfrac{9x^2+12x+4-18x+12-9x^2}{\left(3x+2\right)\left(3x-2\right)}=0\\ \Leftrightarrow-6x+16=0\\ \Leftrightarrow x=\dfrac{8}{3}\left(tm\right)\)

Hải Yến Lê
Xem chi tiết
Nguyễn Việt Lâm
24 tháng 12 2021 lúc 21:16

Do \(5x^2+8x+25=4x^2+x^2+8x+16+9=4x^2+\left(x+4\right)^2+9>0;\forall x\)

Nên phương trình tương đương:

\(5x^2+8x+25=3x^2-9x-5\)

\(\Leftrightarrow2x^2+17x+30=0\)

\(\Rightarrow\left[{}\begin{matrix}x=-6\\x=-\dfrac{5}{2}\end{matrix}\right.\)

ttt
Xem chi tiết
Đỗ Hoàng Tuấn
Xem chi tiết
Đặng Minh Anh
Xem chi tiết
Thắng Nguyễn
13 tháng 1 2017 lúc 21:48

Thấy x=0 ko là nghiệm chia 2 vế cho x ta dc

\(\left(\frac{2x^2-3x+1}{x}\right)\left(\frac{2x^2+5x+1}{x}\right)=9\)

\(\Leftrightarrow\left(2x-3+\frac{1}{x}\right)\left(2x+5+\frac{1}{x}\right)=9\)

Đặt \(t=2x+\frac{1}{x}\) ta có: 

\(\left(t-3\right)\left(t+5\right)=9\Rightarrow t^2+2t-15-9=0\)

\(\Rightarrow t^2+2t-24=0\Rightarrow\left(t-4\right)\left(t+6\right)=0\)

\(\Rightarrow\orbr{\begin{cases}t=4\Rightarrow2x+\frac{1}{x}=4\\t=-6\Rightarrow2x+\frac{1}{x}=-6\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}\frac{2x^2-4x+1}{x}=0\\\frac{2x^2+6x+1}{x}=0\end{cases}}\Rightarrow\orbr{\begin{cases}2x^2-4x+1=0\\2x^2+6x+1=0\end{cases}}\)

\(\orbr{\begin{cases}\Delta=\left(-4\right)^2-4\left(2\cdot1\right)=8\\\Delta=6^2-4\left(2\cdot1\right)=28\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x_{1,2}=\frac{4\pm\sqrt{8}}{4}\\x_{3,4}=\frac{-6\pm\sqrt{28}}{4}\end{cases}}\)

Lê Song Phương
Xem chi tiết
IR IRAN(Islamic Republic...
10 tháng 9 2023 lúc 14:26

a) \(x^3-4x^2-5x+6=\sqrt[3]{7x^2+9x-4}\)

\(\Leftrightarrow-7x^2-9x+4+x^3+3x^2+4x+2=\sqrt[3]{7x^2+9x-4}\)

\(\Leftrightarrow-\left(7x^2+9x-4\right)+\left(x+1\right)^3+x+1=\sqrt[3]{7x^2+9x-4}\) (*)

Đặt \(\sqrt[3]{7x^2+9x-4}=a;x+1=b\)

Khi đó (*) \(\Leftrightarrow-a^3+b^3+b=a\)

\(\Leftrightarrow\left(b-a\right).\left(b^2+ab+a^2+1\right)=0\)

\(\Leftrightarrow b=a\)

Hay \(x+1=\sqrt[3]{7x^2+9x-4}\)

\(\Leftrightarrow\left(x+1\right)^3=7x^2+9x-4\)

\(\Leftrightarrow x^3-4x^2-6x+5=0\)

\(\Leftrightarrow x^3-4x^2-5x-x+5=0\)

\(\Leftrightarrow\left(x-5\right)\left(x^2+x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=\dfrac{-1\pm\sqrt{5}}{2}\end{matrix}\right.\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
31 tháng 12 2018 lúc 12:17

Hoàng Thảo Hiên
Xem chi tiết
Vinh Phạm An Đức
13 tháng 1 2017 lúc 22:05

(2x^2-3x+1)(2x^2+5x+1)=9x^2

<=> (2x^2+5x+1- 8x)(2x^2 +5x+1)=9x^2

<=> (2x^2+5x+1)^2 -8x(2x^2+5x+1)=9x^2

<=>  (2x^2+5x+1)^2 -2*(4x)*(2x^2+5x+1)=9x^2

<=>  (2x^2+5x+1)^2 -2*(4x)*(2x^2+5x+1)+(4x)^2=9x^2+16x^2

<=> (2x^2+5x+1 - 4x)^2=25x^2

<=> (2x^2+x+1)^2=25x^2

<=> (2x^2+x+1)^2 - 25x^2 =0

<=>(2x^2+x+1-5x)(2x^2+x+1+5x)=0

<=>(2x^2-4x+1)(2x^2+6x+1)=0

<=> (2x^2-4x+1)=0 => 2( x^2 - 2x + 1/2)=0

                                <=> x^2-2x +1/2 =0

                                <=> (x^2-2x+1) -1/2 =0

                                <=> (x-1)^2 =1/2     =>  x-1 =căn(1/2)  => x=căn(1/2)+1

                                                              => x-1=-(căn(1/2)) => x=- (căn(1/2)) +1

Hoặc  2x^2 +6x +1=0 

         <=> x^2 + 3x +1/2 =0                

         <=> (x^2 + 2*(1.5)x + (1.5)^2) -(1.5)^2+1/2 =0

         <=> (x+1.5)^2 - 7/4 =0

         <=> (x+1.5)^2 = 7/4    =>        x+1.5 = căn(7/4) => x=căn(7/4) -1.5

                                           =>      x+1.5 =- căn(7/4) => x=-căn(7/4) -1.5

nhớ thanks bạn (+_+)

Hoàng Anh Khuất Bá
Xem chi tiết