So sánh:
\(\dfrac{14}{125};\dfrac{6}{25}\)
so sánh
A=\(\dfrac{14^{14}+1}{14^{15}+1}\) và B=\(\dfrac{14^{15}+1}{14^{16}+1}\)
\(A=\dfrac{14^{14}+1}{14^{15}+1}\)
\(\Rightarrow14.A=\dfrac{14^{15}+14}{14^{15}+1}\)
\(\Rightarrow14.A=\dfrac{14^{15}+1}{14^{15}+1}+\dfrac{13}{14^{15}+1}\)
\(\Rightarrow14.A=1+\dfrac{13}{14^{15}+1}\)
\(B=\dfrac{14^{15}+1}{14^{16}+1}\)
\(\Rightarrow14.B=\dfrac{14^{16}+14}{14^{16}+1}\)
\(\Rightarrow14.B=\dfrac{14^{16}+1}{14^{16}+1}+\dfrac{13}{14^{16}+1}\)
\(\Rightarrow14.B=1+\dfrac{13}{14^{16}+1}\)
Nhận xét: \(\dfrac{13}{14^{15}+1}>\dfrac{13}{14^{16}+1}\) (cùng tử, xét mẫu)
\(\Rightarrow A>B\)
Vậy \(A>B\)
\(\dfrac{2002}{2003}\) và \(\dfrac{14}{13}\)
So sánh
Ta có: \(\dfrac{2002}{2003}< \dfrac{14}{13}\) vì \(\dfrac{2002}{2003}< 1\), \(\dfrac{14}{13}>1\)
so sánh với 1 :
\(\dfrac{1}{4444};\dfrac{3}{7};\dfrac{9}{5};\dfrac{7}{3};\dfrac{14}{15};\dfrac{16}{16};\dfrac{14}{11}\)
↑ \(\dfrac{1}{4}\) :>
\(\dfrac{1}{4444}< 1,\dfrac{3}{7}< 1,\dfrac{9}{5}>1,\dfrac{7}{3}>1,\dfrac{14}{15}< 1,\dfrac{16}{16}=1,\dfrac{14}{11}>1\)
1/4 < 1
3/7 < 1
9/5 > 1
7/3 > 1
14/15 < 1
16/16 = 1
14/11 >1
so sánh 2 phân số \(\dfrac{13}{24}\)và \(\dfrac{12}{14}\)
ta có : `12/14 = 6/7`
`13/24=(13xx7)/(24xx7)= 91/168`
`6/7=(6xx24)/(7xx24)= 144/168`
mà : `91<144`
`=> 13/24 < 12/14`
\(\dfrac{13}{24}\) = \(\dfrac{13\times7}{24\times7}\) = \(\dfrac{91}{168}\)
\(\dfrac{12}{14}\) = \(\dfrac{12\times12}{14\times12}\) = \(\dfrac{144}{168}\)
\(\dfrac{91}{689}< \dfrac{144}{168}\)
\(\dfrac{13}{24}\) < \(\dfrac{12}{14}\)
\(So\) \(sánh:\)
\(a\)) \(\dfrac{14}{21}\) \(và\) \(\dfrac{60}{72}\) \(b\)) \(\dfrac{38}{133}\) \(và\) \(\dfrac{129}{344}\)
\(\dfrac{14}{21};\dfrac{60}{72}\)
\(\dfrac{60}{72}=\dfrac{5}{6}=\dfrac{5\cdot21}{6\cdot21}=\dfrac{105}{126}\)
\(\dfrac{14}{21}=\dfrac{14\cdot6}{21\cdot6}=\dfrac{84}{126}\)
\(\dfrac{84}{123}< \dfrac{105}{126}\Rightarrow\dfrac{14}{21}< \dfrac{60}{72}\)
\(\dfrac{38}{133};\dfrac{129}{344}\)
\(\dfrac{38}{133}=\dfrac{19}{7}=\dfrac{19\cdot8}{7\cdot8}=\dfrac{152}{56}\)
\(\dfrac{129}{344}=\dfrac{3}{8}=\dfrac{3\cdot7}{8\cdot7}=\dfrac{21}{56}\)
\(\dfrac{152}{56}>\dfrac{21}{56}\Rightarrow\dfrac{38}{133}>\dfrac{129}{344}\)
Bài 1: So sánh phân số
\(\dfrac{17}{20}\) và \(\dfrac{11}{14}\)
`17/20 = 119/140`
`11/14=110/140`
`=> 119/140 > 110/140`
`=> 17/20 > 11/14`
\(\dfrac{17}{20}=\dfrac{17\cdot14}{20\cdot14}=\dfrac{238}{280}\)
\(\dfrac{11}{14}=\dfrac{11\cdot20}{14\cdot20}=\dfrac{220}{280}\)
mà 238>220
nên \(\dfrac{17}{20}>\dfrac{11}{14}\)
So sánh hai phân số:
a) \(\dfrac{5}{9}\) và \(\dfrac{7}{9}\) b) \(\dfrac{7}{6}\) và \(\dfrac{6}{6}\) c) \(\dfrac{3}{14}\) và \(\dfrac{5}{14}\) d) \(\dfrac{5}{8}\) và \(\dfrac{9}{8}\)
a) \(\dfrac{5}{9}< \dfrac{7}{9}\)
b) \(\dfrac{7}{6}>\dfrac{6}{6}\)
c) \(\dfrac{3}{14}< \dfrac{5}{14}\)
d) \(\dfrac{5}{8}< \dfrac{9}{8}\)
so sánh 2 lũy thừa sau
a, 125^4 và 49^6
b, 81^7 và 7^14
c, 31^11vaf 17^14
a) ta có: 125^4=(5^3)^4=5^12
49^6= (7^2)^6= 7^12
vì....>.....=>......>.........
B VÀ C LM TƯƠNG TỰ NHÉ LINH
3111 và 1714 Ta thấy 31^11 < 32^11 = (2^5)^11 = 2^55 (1) 17^14 > 16^14 = (2^4 )^14 = 2^56 (2) Từ (1) và (2) 31^11 < 2^55 < 2^56 < 17^14 nên 31^11 < 17^14
B1: So sánh
a.\(\dfrac{-1}{20}\) và \(\dfrac{5}{7}\)
b. \(\dfrac{216}{217}\) và \(\dfrac{1164}{1163}\)
c. \(\dfrac{-12}{17}\) và \(\dfrac{-14}{15}\)
d. \(\dfrac{27}{29}\) và \(\dfrac{-2727}{2929}\)
e. \(\dfrac{3}{-4}\) và \(\dfrac{1}{2}\)
f. \(\dfrac{125}{-126}\) và \(\dfrac{1440}{1439}\)
g. \(\dfrac{-22}{66}\) và \(\dfrac{25}{-76}\)
h. \(\dfrac{-15}{91}\) và \(\dfrac{-23}{138}\)
_Gấp ạ:<<_
a) \(\dfrac{-1}{20}=\dfrac{-7}{140}\)
\(\dfrac{5}{7}=\dfrac{100}{140}\)
mà -7<100
nên \(-\dfrac{1}{20}< \dfrac{5}{7}\)
b) \(\dfrac{216}{217}< 1\)
\(1< \dfrac{1164}{1163}\)
nên \(\dfrac{216}{217}< \dfrac{1164}{1163}\)
c) \(\dfrac{-12}{17}=\dfrac{-180}{255}\)
\(\dfrac{-14}{15}=\dfrac{-238}{255}\)
mà -180>-238
nên \(-\dfrac{12}{17}>\dfrac{-14}{15}\)
d) \(\dfrac{27}{29}>0\)
\(0>-\dfrac{2727}{2929}\)
nên \(\dfrac{27}{29}>-\dfrac{2727}{2929}\)