tính tổng S=1*2+2*3+3*4+4*5+...+99*100
tính tổng :S = 1/1*2 + 1/2*3 + 1/3*4 + 1/4*5 + .........+ 1/99*100
S= 1/1.2 + 1/2.3 + 1/3.4+...+ 1/99.100
=1-1/2+1/2-1/3+1/3-1/4+...+1/99-1/100
=1-1/100
=99/100
\(S=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
\(S=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(S=1-\frac{1}{100}\)
\(S=\frac{99}{100}\)
\(S=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
\(S=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(S=1-\frac{1}{100}=\frac{99}{100}\)
Tính tổng S = 1 - 2 + 3 - 4 + 4 - 5 + 5 - 6 +........................................................+ 99 - 100 ta được S = .........................................................
Tính tổng S=1*2+2*3+3*4+4*5...+99*100 ta được kết quả .S=?
\(S=1\times2+2\times3+3\times4+...+99\times100\)
\(3\times S=1\times2\times3+2\times3\times\left(4-1\right)+3\times4\times\left(5-2\right)+...+99\times100\times\left(101-98\right)\)
\(=1\times2\times3+2\times3\times4-1\times2\times3+3\times4\times5-2\times3\times4+...+99\times100\times101-98\times99\times100\)
\(=99\times100\times101\)
\(S=\frac{99\times100\times101}{3}\)
Cho mình hỏi tính tổng S=1*2+2*3+3*4+4*5+...+99*100 bằng bao nhiêu
Ta có:3S=1.2.3+2.3.3+...99.100
=1.2.(3-0)+2.3.(4-1)+...+99.100.(101-98)
=1.2.3-0.1.2+2.3.4-1.2.3+...+99.100.101-98.99.100
=99.100.101
=>S=99.100.101:3(tự tính)
Tính tổng : S=1 - 2 + 3 - 4 + 5 - 6+...99-100+101
1-2+3-4+5-6+...+99-100+101
= (1+3+5+...+101) - (2+4+6+...+100)
tu 1 den 101 co : (101-1):2+1=51
1+..+101 = (1+101)x 51:2= 2601
tu 2 den 100 co : (100-2);2+1=50
2+...+100 = (100 +2) x 50:2=2550
=> S= 2601-2550=51
Tính tổng S=1-2+3-4+5-6+7-...+99-100
S=1-2+3-4+..........+99-100
ta có: (100-1):1+1= 100
=>từ 1 đến 100 có 100 số
=(1-2)+(3-4)+........+(99-100)
=(-1)+(-1)+........+(-1)
ta có: 100:2=50
=>có 50 số -1
=(-1).50
=-50
k mình nha bạn!
Bài 4: Tính tổng 1) 1 + (-2) + 3 + (-4) + . . . + 19 + (-20) 2) 1 – 2 + 3 – 4 + . . . + 99 – 100 3) 2 – 4 + 6 – 8 + . . . + 48 – 50 4) – 1 + 3 – 5 + 7 - . . . . + 97 – 99 5) 1 + 2 – 3 – 4 + ... + 97 + 98 – 99 - 100
1. 1 + ( -2) +3 +(-4) + .........+ 19 + (-20)
= -1 + ( -1) +....+(-1)
= -1. 10
= -10
2. 1 – 2 + 3 – 4 + . . . + 99 – 100
= ( -1) + (-1) +....+(-1)
= -1. 50
= -50
3. 2 – 4 + 6 – 8 + . . . + 48 – 50
= (-2) + (-2) +....+ (-2)
= -2. 12 + 26
= -24 + 26
= 2
4. – 1 + 3 – 5 + 7 - . . . . + 97 – 99
= 2 + 2 +......+2
= 2.25
= 50
5. 1 + 2 – 3 – 4 + ... + 97 + 98 – 99 - 100
= (1+2-3-4) +......+ ( 97+98-99 -100)
= -4 . (-4).....(-4)
= -4. 25
= -100
Tính tổng
S=1*2*3*4+2*3*4*5+...+98*99*100*101
Giúp với
\(\Rightarrow\)5S=1.2.3.4.5+2.3.4.5.5+...+98.99.100.101.5
\(\Rightarrow\)5S=1.2.3.4.5+2.3.4.5.(6-1)+...+98.99.100.101.(102-97)
\(\Rightarrow\)5S=1.2.3.4.5+2.3.4.5.6-1.2.3.4.5+...+98.99.100.101.102-97.98.99.100.101
\(\Rightarrow\)5S=98.99.100.101.102
\(\Rightarrow\)S=\(\frac{98.99.100.101.102}{5}\)
Tính tổng sau: \(S=\dfrac{1}{2+\sqrt{2}}+\dfrac{1}{3\sqrt{2}+2\sqrt{3}}+\dfrac{1}{4\sqrt{3}+3\sqrt{4}}+...+\dfrac{1}{100\sqrt{99}+99\sqrt{100}}\)
Ta có: \(S=\dfrac{1}{2+\sqrt{2}}+\dfrac{1}{3\sqrt{2}+2\sqrt{3}}+\dfrac{1}{4\sqrt{3}+3\sqrt{4}}+...+\dfrac{1}{100\sqrt{99}+99\sqrt{100}}\)
\(=1-\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{2}}-\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{99}}-\dfrac{1}{10}\)
\(=1-\dfrac{1}{10}=\dfrac{9}{10}\)