Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
dream XD
Xem chi tiết
nguyễn hữu kim
Xem chi tiết
Nguyễn Lê Phước Thịnh
29 tháng 7 2023 lúc 11:55

(x+y+z)^2=x^2+y^2+z^2

=>x^2+y^2+z^2+2(xy+yz+xz)=x^2+y^2+z^2

=>2(xy+yz+xz)=0

=>xy+yz+xz=0

1/x+1/y+1/z

=(xz+yz+xy)/xyz

=0/xyz=0

nguyen thi hoa trinh
Xem chi tiết
Nguyễn Linh Chi
5 tháng 4 2020 lúc 21:19

Ta có: \(\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}=1\)

+) TH1: x + y + z = 0 => x + y = -z ; x + z = -y; y + z = -x

Do đó: \(\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}=\frac{x}{-x}+\frac{y}{-y}=\frac{z}{-z}=-3\)\(\ne1\)loại

+) TH2: x + y + z \(\ne0\)

\(\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}=1\)

<=> \(\frac{x\left(x+y+z\right)}{y+z}+\frac{y\left(x+y+z\right)}{z+x}+\frac{z\left(x+y+z\right)}{x+y}=x+y+z\)

<=> \(\frac{x^2}{y+z}+x+\frac{y^2}{z+x}+y+\frac{z^2}{x+y}+z=x+y+z\)

<=> \(\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}=0\)( đpcm)

Khách vãng lai đã xóa
Lê Thanh Trọng
Xem chi tiết
Xyz OLM
26 tháng 12 2020 lúc 20:31

Ta có :\(\frac{1}{x}=\frac{1}{2}\left(\frac{1}{y}+\frac{1}{z}\right)\)

=> \(\frac{1}{x}=\frac{y+z}{2yz}\)

=> 2yz = x(y + z)

=> 2yz - xy - xz = 0

=> (yz - xy) + (yz - xz) = 0

=> y(z - x) + z(y- x) = 0

=> y(z - x) = -z(y - x)

=> -y(x - z) = -z(y - x) 

=> \(\frac{-z}{-y}=\frac{x-z}{y-x}\Leftrightarrow\frac{z}{y}=\frac{x-z}{y-x}\) 

Khách vãng lai đã xóa
Nguyễn Vương Phú
Xem chi tiết
Trên con đường thành côn...
9 tháng 10 2021 lúc 11:12

Đặt \(A=x+y+z+\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\)

\(\Leftrightarrow A=x+y+z+\dfrac{9}{9x}+\dfrac{9}{9y}+\dfrac{9}{9z}\)

\(\Leftrightarrow A=x+y+z+\dfrac{1}{9x}+\dfrac{8}{9x}+\dfrac{1}{9y}+\dfrac{8}{9y}+\dfrac{1}{9z}+\dfrac{8}{9z}\)

\(\Leftrightarrow A=\left(x+\dfrac{1}{9x}\right)+\left(y+\dfrac{1}{9y}\right)+\left(z+\dfrac{1}{9z}\right)+\left(\dfrac{8}{9x}+\dfrac{8}{9y}+\dfrac{8}{9z}\right)\)

\(\Leftrightarrow A=\left(x+\dfrac{1}{9x}\right)+\left(y+\dfrac{1}{9y}\right)+\left(z+\dfrac{1}{9z}\right)+\dfrac{8}{9}.\left(\dfrac{1^2}{x}+\dfrac{1^2}{y}+\dfrac{1^2}{z}\right)\)

\(\Rightarrow A\ge2\sqrt{x.\dfrac{1}{9x}}+2\sqrt{y.\dfrac{1}{9y}}+2\sqrt{z.\dfrac{1}{9z}}+\dfrac{8}{9}.\dfrac{\left(1+1+1\right)^2}{x+y+z}\)

\(\Rightarrow A\ge2\sqrt{\dfrac{1}{9}}+2\sqrt{\dfrac{1}{9}}+2\sqrt{\dfrac{1}{9}}+\dfrac{8}{9}.\dfrac{3^2}{1}\)

\(\Rightarrow A\ge2.\dfrac{1}{3}.3+8=2+8=10\)

Vậy ta có BĐT cần chứng minh.

Dấu\("="\) xảy ra\(\Leftrightarrow x=y=z=\dfrac{1}{3}\)

 

LA LA LAND
Xem chi tiết
LA LA LAND
29 tháng 12 2018 lúc 16:07

ai giúp mình với

LA LA LAND
29 tháng 12 2018 lúc 16:10

...

Nguyễn Minh Đạt
13 tháng 5 lúc 22:39

Ta có:
         \(\dfrac{x-y}{1+xy}\)+\(\dfrac{y-z}{1+yz}\)+\(\dfrac{z-x}{1+xz}\) = \(\dfrac{x-y}{1+xy}\)+\(\dfrac{-\left(x-y\right)-\left(z-x\right)}{1+yz}\)+\(\dfrac{z-x}{1+xz}\)

         =\(\dfrac{x-y}{1+xy}\)\(-\dfrac{x-y}{1+yz}\) \(-\dfrac{z-x}{1+yz}\)+\(\dfrac{z-x}{1+xz}\) 

         = \(\left(x-y\right)\)\(\left(\dfrac{\left(1+yz\right)-\left(1+xy\right)}{\left(1+yz\right)\left(1+xy\right)}\right)\)+(\(z-x\))\(\left(\dfrac{\left(1+yz\right)-\left(1+zx\right)}{\left(1+yz\right)\left(1+zx\right)}\right)\)

         =\(\left(x-y\right)\)\(\dfrac{y\left(z-x\right)}{\left(1+yz\right)\left(1+xy\right)}\)+(\(z-x\))\(\dfrac{-z\left(x-y\right)}{\left(1+yz\right)\left(1+zx\right)}\)

         =\(\left(\dfrac{\left(x-y\right)\left(z-x\right)}{1+yz}\right)\)\(\left(\dfrac{y\left(1+xz\right)-z\left(1+xy\right)}{\left(1+xz\right)\left(1+xy\right)}\right)\)

       =đpcm

cù thị lan anh
Xem chi tiết
Akai Haruma
12 tháng 10 2021 lúc 19:10

Bài 1:

a. \(=[(3x+(4y-5z)][3x-(4y-5z)]=(3x)^2-(4y-5z)^2\)

\(=9x^2-(16y^2-40yz+25z^2)=9x^2-16y^2+40yz-25z^2\)

b.

\(=(3a-1)^2+2(3a-1)(3a+1)+(3a+1)^2=[(3a-1)+(3a+1)]^2=(6a)^2=36a^2\)

Akai Haruma
12 tháng 10 2021 lúc 19:12

Bài 2:

\((x+y+z)^3=[(x+y)+z]^3=(x+y)^3+3(x+y)^2z+3(x+y)z^2+z^3\)

\(=[x^3+y^3+3xy(x+y)]+3(x+y)z(x+y+z)+z^3\)

\(=x^3+y^3+z^3+3xy(x+y)+3(x+y)z(x+y+z)\)

\(=x^3+y^3+z^3+3(x+y)(xy+zx+zy+z^2)\)

\(=x^3+y^3+z^3+3(x+y)(z+x)(z+y)\) (đpcm)

Đỗ Hoàng Tùng
Xem chi tiết
Ngọc Mai_NBK
21 tháng 2 2021 lúc 21:19

Ta có:

 x/x+y + y/y+z + z/z+x = 1+ y+ 1+z+ 1+x= 3+x+y+z

 Do, x,y,z là các số nguyên dương nên 3+x+y+z> 3 >1

Khách vãng lai đã xóa
kim taehyung
Xem chi tiết
Nguyễn Việt Lâm
13 tháng 1 lúc 14:05

Chứng minh biểu thức thế nào em?