Cho đa thức f(x)=ax+b.Tìm a,b nếu F(x1+x2)=F(x1)+F(x2) với mọi x1,x2
Cho f(x)=ax+b.
Tìm điều kiện của b để f(x1+x2)=f(x1)+f(x2)
Với mọi x1,x2 thuộc Q
Cho f(x)=ax+b.
Tìm điều kiện của b để f(x1+x2)=f(x1)+f(x2)
Với mọi x1,x2 thuộc Q
\(f\left(x_1+x_2\right)=f\left(x_1\right)+f\left(x_2\right)\)
\(\Rightarrow a\left(x_1+x_2\right)+b=ax_1+b+ax_2+b\)
\(\Rightarrow a\left(x_1+x_2\right)+b=a\left(x_1+x_2\right)+2b\)
\(\Rightarrow b=2b\)
\(\Rightarrow2b-b=0\Rightarrow b=0\)
Cho f(x)=ax+b.
Tìm điều kiện của b để f(x1+x2)
Với mọi x1,x2 thuộc Q
Cho đa thức f (x) = ax+b và g (x) = cx+d . Chứng minh nếu có hai giá trị x1 và x2 của x mà x1 khác x2 sao cho f (x1) = g (x1) và f (x2) = g (x2) thì f (x) = g (x) với mọi x thuộc Z
Cho đa thức f (x) = ax+b và g (x) = cx+d . Chứng minh nếu có hai giá trị x1 và x2 của x mà x1 khác x2 sao cho f (x1) = g (x1) và f (x2) = g (x2) thì f (x) = g (x) với mọi x thuộc Z
Cho 2 đa thức f(x) = x2 + ax + b và g(x) = x2 + cx +d
.Chứng Minh Rằng: Nếu có 2 giá trị x1, x2 của x ( x1 ≠ x2) sao cho f(x1)=g(x1) hay f(x2) = g(x2) thì ta luôn có a=c và b=d
Giúp toiii vớiiii
cảm ơn ạ!
cho hàm số f(x) có tính chất f(x1 + x2) = f(x1) + f(x2) với mọi x1 + x2 thuộc R chứng minh rằng hàm số f(x) có các tính chất sau : a, f(0) =0 b, f(-x) =-f(x) với mọi x thuộc R c, f(x1-x2) = f(x1) - f(x2) với mọi x1 , x2 thuộc R giúp mk nhaaaaaaa
ch đa thức f(x)=ax^2]+ax+b.tìm các hệ số a,b biết đa thức có 2 nghiệm x1=2,x2=3
giúp mik với
Mik tick cho!!
1) đa thức f(x)=x^6-x^3+x^2-x+1 có hay ko có nghiệm trên tập hợp số thưc r
2)cho hàm số f(x) xác định với mọi x khác thỏa mãn : f(1)=1 và f(x1 +x2)=f(x1)+f (x2)với mọi x1,x2 jkhacs 0 , x1 + x2 cũng khác 0 và f (1/x)=1/x^2 . f(x) . CMR : f)5/7)=5/7
cho hàm số f(x) xác định với mọi x khác 0 thỏa mãn
a) f(1)=1
b)f(1/x)=1/x^2.f(x)
c) f(x1+x2)=f(x1)+f(x2) với mọi x1 , x2 khác 0 , x1+x2 khác 0 . CTR f(5/7)=5/7
Theo c) \(f\left(\frac{5}{7}\right)=f\left(\frac{2}{7}+\frac{3}{7}\right)=f\left(\frac{2}{7}\right)+f\left(\frac{3}{7}\right)\)
\(f\left(\frac{2}{7}\right)=f\left(\frac{1}{7}+\frac{1}{7}\right)=f\left(\frac{1}{7}\right)+f\left(\frac{1}{7}\right)=2.f\left(\frac{1}{7}\right)\)
\(f\left(\frac{3}{7}\right)=f\left(\frac{1}{7}+\frac{2}{7}\right)=f\left(\frac{1}{7}\right)+f\left(\frac{2}{7}\right)=f\left(\frac{1}{7}\right)+2f\left(\frac{1}{7}\right)=3.f\left(\frac{1}{7}\right)\)
\(\implies\)\(f\left(\frac{5}{7}\right)=5.f\left(\frac{1}{7}\right)\) (1)
Theo b) \(f\left(\frac{1}{7}\right)=\frac{1}{7^2}.f\left(7\right)\) (2)
Theo c) \(f\left(7\right)=f\left(3+4\right)=f\left(3\right)+f\left(4\right)\)
\(=2.f\left(3\right)+f\left(1\right)\)
\(=6.f\left(1\right)+f\left(1\right)\)
\(=7.f\left(1\right)\)
Theo a)\(f\left(1\right)=1\)\(\implies\)\(f\left(7\right)=7\) (3)
Từ (1);(2);(3)
\(\implies\) \(f\left(\frac{5}{7}\right)=\frac{5}{7}\)