Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trần Hằng
Xem chi tiết
Vũ Thu Hiền
Xem chi tiết
Akai Haruma
30 tháng 11 2021 lúc 22:55

Đề sai với $b=0,1; c=0,2; a=0,25$

Maxx
Xem chi tiết
Vladislav Hoàng
11 tháng 12 2020 lúc 23:19

1/a+1/b+1/c=0

=>(ab+ac+bc)/abc=0

=> ab+ac+bc=0

(a+b+c)^2=a^2+b^2+c^2+2(ab+ac+bc)=0

=> a^2+b^2+c^2=0

Bạn xem lại đề nhé.

Anh Bùi Thị
Xem chi tiết
Thảo Vi
Xem chi tiết
Nguyễn Việt Lâm
29 tháng 1 2021 lúc 22:20

1.

Sửa đề: \(S=\dfrac{1}{6}\left(ch_a+bh_c+ah_b\right)\)

\(a.h_a=b.h_b=c.h_c=2S\Rightarrow\left\{{}\begin{matrix}h_a=\dfrac{2S}{a}\\h_b=\dfrac{2S}{b}\\h_c=\dfrac{2S}{c}\end{matrix}\right.\)

\(\Rightarrow6S=\dfrac{2Sc}{a}+\dfrac{2Sb}{c}+\dfrac{2Sa}{b}\)

\(\Leftrightarrow\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}=3\)

Mặt khác theo AM-GM: \(\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}\ge3\sqrt[3]{\dfrac{abc}{abc}}=3\)

Dấu "=" xảy ra khi và chỉ khi \(a=b=c\)

\(\Leftrightarrow\) Tam giác đã cho đều

Nguyễn Việt Lâm
29 tháng 1 2021 lúc 22:20

2.

Bạn coi lại đề, biểu thức câu này rất kì quặc (2 vế không đồng bậc)

Ở vế trái là \(2\left(a^2+b^2+c^2\right)\) hay \(2\left(a^3+b^3+c^3\right)\) nhỉ?

3.

Theo câu a, ta có:

\(VT=\dfrac{2S}{a}+\dfrac{2S}{b}+\dfrac{2S}{c}\ge\dfrac{18S}{a+b+c}=\dfrac{18.pr}{a+b+c}=9r\)

Dấu "=" xảy ra khi và chỉ khi \(a=b=c\)

Hay tam giác đã cho đều

Nguyễn Việt Lâm
29 tháng 1 2021 lúc 22:24

4.

Theo định lý hàm sin: \(\left\{{}\begin{matrix}sinA=\dfrac{a}{2R}\\sinB=\dfrac{b}{2R}\\sinC=\dfrac{c}{2R}\end{matrix}\right.\)

\(\Rightarrow\dfrac{a}{2R}=\dfrac{b}{2\sqrt{3}R}=\dfrac{c}{4R}\)

\(\Leftrightarrow a=\dfrac{b}{\sqrt{3}}=\dfrac{c}{2}\)

\(\Rightarrow\left\{{}\begin{matrix}a=\dfrac{c}{2}\\b=\dfrac{c\sqrt{3}}{2}\end{matrix}\right.\)

\(\Rightarrow a^2+b^2=\dfrac{c^2}{4}+\dfrac{3c^2}{4}=c^2\)

\(\Rightarrow\Delta ABC\) vuông tại C theo Pitago đảo

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
8 tháng 7 2017 lúc 16:27

a) Vì a, b, c là độ dài 3 cạnh của một tam giác

⇒ a + c > b và a + b > c (Bất đẳng thức tam giác)

⇒ a + c – b > 0 và a + b – c > 0

Ta có: (b – c)2 < a2

⇔ a2 – (b – c)2 > 0

⇔ (a – (b – c))(a + (b – c)) > 0

⇔ (a – b + c).(a + b – c) > 0 (Luôn đúng vì a + c – b > 0 và a + b – c > 0).

Vậy ta có (b – c)2 < a2 (1) (đpcm)

b) Chứng minh tương tự phần a) ta có :

( a – b)2 < c2 (2)

(c – a)2 < b2 (3)

Cộng ba bất đẳng thức (1), (2), (3) ta có:

(b – c)2 + (c – a)2 + (a – b)2 < a2 + b2 + c2

⇒ b2 – 2bc + c2 + c2 – 2ca + a2 + a2 – 2ab + b2 < a2 + b2 + c2

⇒ 2(a2 + b2 + c2) – 2(ab + bc + ca) < a2 + b2 + c2

⇒ a2 + b2 + c2 < 2(ab + bc + ca) (đpcm).

Bùi Tiến Hùng
Xem chi tiết
Lưu Nhật Minh
Xem chi tiết
Nguyễn Hoàng Minh
9 tháng 12 2021 lúc 19:14

Vì a,b,c là 3 cạnh tam giác nên \(a+b>c\Leftrightarrow ac+bc>c^2\)

CMTT: \(ab+bc>b^2;ab+ac>a^2\)

Cộng vế theo vế \(\Leftrightarrow a^2+b^2+c^2< ab+bc+ca+ab+bc+ca\)

\(\Leftrightarrow a^2+b^2+c^2< 2ab+2bc+2ca\\ \Leftrightarrow a^2+b^2+c^2-2ab-2bc-2ca< 0\)

 

Nguyễn Trần Thanh Loan
Xem chi tiết
LƯƠNG VŨ HÀ CHI
18 tháng 2 2020 lúc 14:38

86 vì ta học lớp 9

Khách vãng lai đã xóa
Kiệt Nguyễn
18 tháng 2 2020 lúc 14:38

Ta có: \(a\left(b^2-1\right)\left(c^2-1\right)+b\left(a^2-1\right)\left(c^2-1\right)+c\left(a^2-1\right)\left(b^2-1\right)\)

\(=a\left(b^2c^2-b^2-c^2+1\right)+b\left(a^2c^2-a^2-c^2+1\right)\)

\(+c\left(a^2b^2-a^2-b^2+1\right)\)

\(=ab^2c^2-ab^2-ac^2+a+ba^2c^2-a^2b-bc^2+b\)

\(+ca^2b^2-a^2c-b^2c+c\)

\(=\left(ab^2c^2+ba^2c^2+ca^2b^2\right)+\left(a+b+c\right)\)

\(-\left(ab^2+ac^2+a^2b+bc^2+a^2c+b^2c\right)\)

\(=abc\left(bc+ac+ab\right)+\left(a+b+c\right)\)\(-\left[ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)\right]\)

\(=abc\left(bc+ac+ab\right)+\left(a+b+c\right)+3abc\)\(-\left[ab\left(a+b+c\right)+bc\left(a+b+c\right)+ca\left(a+b+c\right)\right]\)

\(=abc\left(bc+ac+ab\right)+\left(a+b+c\right)+3abc\)\(-\left(a+b+c\right)\left(ab+bc+ca\right)\)

\(=abc\left(bc+ac+ab\right)+abc+3abc\)\(-abc\left(ab+bc+ca\right)=4abc\)

Vậy \(a\left(b^2-1\right)\left(c^2-1\right)+b\left(a^2-1\right)\left(c^2-1\right)+c\left(a^2-1\right)\left(b^2-1\right)=4abc\)(đpcm)

Khách vãng lai đã xóa