Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Đặt Tên Chi
Xem chi tiết
Bùi Hiền Thảo
Xem chi tiết
soyeon_Tiểubàng giải
13 tháng 10 2016 lúc 21:16

Ta có:

\(\frac{1}{xy+x+1}+\frac{y}{yz+y+1}+\frac{1}{xyz+yz+y}=\frac{xyz}{xy+x+xyz}+\frac{y}{yz+y+1}+\frac{1}{1+yz+y}\)

                                              \(=\frac{xyz}{x.\left(y+1+yz\right)}+\frac{y}{yz+y+1}+\frac{1}{1+yz+y}\)

                                              \(=\frac{yz}{y+1+yz}+\frac{y}{yz+y+1}+\frac{1}{1+yz+y}\)

                                               \(=\frac{yz+y+1}{yz+y+1}=1\left(đpcm\right)\)

Nhoc Nhi Nho
Xem chi tiết
Nguyễn Nhật Minh
2 tháng 4 2016 lúc 21:53

= 1 nhé

liên hoàng
2 tháng 4 2016 lúc 22:21

thay x.y.z zô biểu thức đi . rùi đặt nhân tử chung rùi tự làm , đến đó mà k làm dc nữa  thì die đi

Đức Minh Nguyễn
Xem chi tiết
zZz Cool Kid_new zZz
25 tháng 7 2019 lúc 15:00

\(A=\left(1-\frac{z}{x}\right)\left(1-\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\)

\(A=\frac{x-z}{x}\cdot\frac{y-x}{y}\cdot\frac{y+z}{z}\)

Do \(x-y-z=0\)

\(\Rightarrow x-z=y;y-x=-z;y+z=x\)

Khi đó \(A=\frac{y}{x}\cdot\frac{-z}{y}\cdot\frac{x}{z}=-1\)

Vậy A=-1

zZz Cool Kid_new zZz
25 tháng 7 2019 lúc 15:04

\(\frac{1}{xy+x+1}+\frac{y}{yz+y+1}+\frac{1}{xyz+yz+y}\)

\(=\frac{1}{xy+x+1}+\frac{y}{yz+y+1}+\frac{1}{1+yz+y}\)

\(=\frac{1}{xy+x+1}+\frac{y+1}{yz+y+1}\)

\(=\frac{yz}{xy\cdot yz+xyz+yz}+\frac{y+1}{yz+y+1}\)

\(=\frac{yz}{yz+y+1}+\frac{y+1}{yz+y+1}\)

\(=\frac{yz+y+1}{yz+y+1}\)

\(=1\)

witch roses
Xem chi tiết
Ác Mộng
5 tháng 7 2015 lúc 8:53

Từ xyz=1

=>\(\frac{1}{xy+x+1}+\frac{1}{yz+y+1}+\frac{1}{xyz+zx+z}=\frac{z}{xyz+xz+z}+\frac{xz}{xyz^2+xyz+xz}+\frac{1}{xyz+zx+z}\)=\(\frac{z}{1+zx+z}+\frac{xz}{1+z+xz}+\frac{1}{1+xz+z}=1\left(đpcm\right)\)

Ngô Sỹ Tiến Dũng
4 tháng 4 2017 lúc 22:00

ác mộng trả lời sai rồi

Nhi An
6 tháng 12 2017 lúc 21:41
Ta có:1/1+x+xy + 1/1+y+yz +1/1+z+xz= xyz/ xyz+x+xy +1/1+y+yz + xyz/xyz+z+xz =yz/yz+y+1 + 1/ yz+y+1 +xy/xy+x+1 =yz+1/yz+y+1 +xy.xyz/xy+x+xyz =yz+1/yz+y+1 +xy^2z/y+yz+1 =yz+1+y/yz+y+1 =1(đpcm)
Nguyễn Huy Hoàng
Xem chi tiết
Lê Thị Thục Hiền
19 tháng 5 2021 lúc 11:26

\(gt\Leftrightarrow\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{y}}+\dfrac{1}{\sqrt{z}}=1\)

\(P=\dfrac{1}{xyz}\left(x\sqrt{2y^2+yz+2z^2}+y\sqrt{2x^2+xz+2z^2}+z\sqrt{2y^2+xy+2x^2}\right)\)

\(=\dfrac{1}{xyz}\left(x\sqrt{\dfrac{5}{4}\left(y+z\right)^2+\dfrac{3}{4}\left(y-z\right)^2}+y\sqrt{\dfrac{5}{4}\left(x+z\right)^2+\dfrac{3}{4}\left(x-z\right)^2}+z\sqrt{\dfrac{5}{4}\left(x+y\right)^2+\dfrac{3}{4}\left(x-y\right)^2}\right)\)

\(\ge\dfrac{1}{xyz}\left[x.\dfrac{\sqrt{5}\left(z+y\right)}{2}+y.\dfrac{\sqrt{5}\left(x+z\right)}{2}+z.\dfrac{\sqrt{5}\left(x+y\right)}{2}\right]\)

\(=\dfrac{\sqrt{5}\left(z+y\right)}{2yz}+\dfrac{\sqrt{5}\left(x+z\right)}{2xz}+\dfrac{\sqrt{5}\left(x+y\right)}{2xy}\)

\(=\dfrac{\sqrt{5}}{3}\left(1+1+1\right)\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\ge\dfrac{\sqrt{5}}{3}\left(\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{y}}+\dfrac{1}{\sqrt{z}}\right)^2=\dfrac{\sqrt{5}}{3}\) (bunhia)

Dấu = xảy ra khi \(x=y=z=9\)

Khôi Bùi
19 tháng 5 2021 lúc 11:30

 Thấy : \(\sqrt{2y^2+yz+2z^2}=\sqrt{\dfrac{5}{4}\left(y+z\right)^2+\dfrac{3}{4}\left(y-z\right)^2}\ge\dfrac{\sqrt{5}}{2}\left(y+z\right)>0\) 

CMTT : \(\sqrt{2x^2+xz+2z^2}\ge\dfrac{\sqrt{5}}{2}\left(x+z\right)\)  ; \(\sqrt{2y^2+xy+2x^2}\ge\dfrac{\sqrt{5}}{2}\left(x+y\right)\) 

Suy ra : \(P\ge\dfrac{1}{xyz}.\dfrac{\sqrt{5}}{2}\left[x\left(y+z\right)+y\left(x+z\right)+z\left(x+y\right)\right]\)

\(\Rightarrow P\ge\sqrt{5}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\) 

Ta có : \(\sqrt{xy}+\sqrt{yz}+\sqrt{xz}=\sqrt{xyz}\Leftrightarrow\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{y}}+\dfrac{1}{\sqrt{z}}=1\) 

Mặt khác :   \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\ge\dfrac{\left(\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{y}}+\dfrac{1}{\sqrt{z}}\right)^2}{3}=\dfrac{1}{3}\)

Suy ra : \(P\ge\dfrac{\sqrt{5}}{3}\)

" = " \(\Leftrightarrow x=y=z=9\)

trần thành đạt
Xem chi tiết
Phan Hải Đăng
Xem chi tiết
Luffy123
5 tháng 12 2018 lúc 21:26

ta có :

\(\frac{1}{xy+x+1}+\frac{y}{yz+y+1}+\frac{1}{xyz+yz+y}\)

\(\frac{xyz}{xy+x+xyz}+\frac{y}{yz+y+1}+\frac{xyz}{1+yz+y}\)

\(\frac{yz+y+xyz}{y+1+yz}\)

\(\frac{yz+y+1}{yz+y+1}\)

=1

trần xuân bách
10 tháng 12 2019 lúc 17:09

luffy123 làm đúng mà sao vẫn có đứa bảo sai kìa

Khách vãng lai đã xóa
nhóm54
Xem chi tiết