Tính tích rồi tìm bậc của tích vừa tìm được\(-\frac{a+1}{5}\left(x^2y^4t^2\right)^3và\left(\frac{1}{2b}x^3y\right)^2\)
Tính tích rồi tìm bậc của tích tìm được\(\text{}\text{}\)\(-\frac{a+1}{5}\left(x^2y^4t^2\right)^3và\left(\frac{1}{2b}x^3y\right)^2\)
tính tích của các đơn thức sau rồi tìm Bậc của đơn thức thu được:\(\left(\dfrac{-1}{3}x^2y\right)\times\left(6xy^2\right)\)
`(-1/3 x^2 y) .(6xy^2)`
`=(-1/3 . 6).(x^2.x).(y.y^2)`
`=-2 x^3 y^3`
Bậc của đơn thức là `6`
Thu gọn va tìm bậc đơn thức\(A=\left(-\frac{2}{5}x^2y\right)\left(\frac{15}{8}xy^2\right)\left(-x^3y^2\right)\)
\(A=\left(\frac{-2}{5}x^2y\right)\left(\frac{15}{8}xy^2\right)\left(-x^3y^2\right)\)
\(A=\left(\frac{-2}{5}.\frac{15}{8}.\left(-1\right)\right)\left(x^2y.xy^2.x^3y^2\right)\)
\(A=\frac{3}{4}x^6y^5\)
bậc của đơn thức trên là:11
Bài 1: Cho 3 đơn thức M=-5xy; N=11xy2:;P=\(\frac{7}{5}\)x2y3.CMR 3 đơn thức này ko thể cùng gt dương
Bài 2: Thu gọn các đơn thức trong biểu thức đại số
D=\(\frac{\left(3x^4y^3\right)^2\left(\frac{1}{6}x^2y\right)+\left(8x^{n-9}\right)\left(-2x^{9-n}\right)}{15x^3y^2\left(0,4ax^2y^2z^2\right)}\) (với axyz\(\ne\)0)
Bài 3: Tính tích các đơn thức rồi cho biết hệ số và bậc của đơn thức đối với tập hợp các biến số (a,b,c là hằng số)
a)\(\left(-\frac{1}{2}\left(a-1\right)x^3y^4z^2\right)^5\)
b)\(\left(a^2b^2xy^2z^{n-1}\right)\left(-b^3cx^4z^{7-n}\right)\)
c)\(\left(\frac{-9}{10}a^3x^2y\right)\left(\frac{-5}{3}ax^5y^2z\right)^3\)
Rút gọn rồi tính giá trị của biểu thức khi x=1;y=\(-3\frac{1}{4}\)
\(\frac{\left(x-y\right)^2+xy}{\left(x+y\right)^2-xy}\)\(\left[1:\frac{x^5+y^5+x^3y^2+x^2y^3}{\left(x^3y^3\right)\left(x^3+y^3+x^2y+xy^2\right)}\right]\)
bài 1 . Tính tích các đơn thức rồi cho biết hệ số và bậc của dơn thức ( a,b,c là hằng số )
a) \(\left[-\frac{1}{2}\left(a-1\right)x^3y^4z^2\right]^5\)
b) \(\left(a^5b^2xy^2z^{n-1}\right)\left(-b^3cx^4z^{7-n}\right)\)
c) \(\left(-\frac{9}{10}a^3x^2y\right).\left(-\frac{5}{3}ax^5y^2z\right)^3\)
a) \(\left[-\frac{1}{2}\left(a-1\right)x^3y^4z^2\right]^5=\frac{-\left(a-1\right)^5}{32}x^{15}y^{20}z^{10}\)
Hệ số: \(\frac{-\left(a-1\right)^5}{32}\). Bậc của đơn thức: \(15+20+10=45\)
b) \(\left(a^5b^2xy^2z^{n-1}\right)\left(-b^3cx^4z^{7-n}\right)=-a^5b^5cx^5y^2z^6\)
Hệ số: \(-a^5b^5c\). Bậc của đơn thức: \(5+2+6=13\)
c) \(\left(-\frac{9}{10}a^3x^2y\right)\left(-\frac{5}{3}ax^5y^2z\right)^3=\left(-\frac{9}{10}a^3x^2y\right)\left(-\frac{125}{27}a^3x^{15}y^6z^3\right)\)\(=\frac{25}{6}a^6x^{17}y^7z^3\)
Hệ số: \(\frac{25}{6}a^6\). Bậc của đơn thức:\(17+7+3=27\)
1.Rút gọn các đơn thức sau và chỉ bra hệ số và phần biến
a)\(-2x^2y.\left(-xy^2\right)\)
b)\(\frac{1}{4}\left(x^2y^3\right)^2.\left(-2xy\right)\)
2.Tính các tích sau rồi tìm bậc của công thức thu được
a)\(\left(-7x^2yz\right).\frac{3}{7}xy^2z^3\)
b)\(-\frac{2}{3}xy^2z.\left(-3x^2y\right)^2\)
c)\(x^2yz.\left(2xy\right)^2z\)
d)\(-\frac{1}{3}x^2y.\left(-x^3yz\right)\)
3.Thực hiện phép nhân các đơn thức sau rồi tìm bậc đơn thức nhận được
a)\(4x^2y.\left(-5xy^4\right)\)
b)\(\frac{-1}{2}x^3y.\left(-xy\right)\)
c)\(\left(-2x^3y\right).3xy^4\)
d)\(\frac{-4}{5}x^3y.\left(-xy\right)\)
e)\(\frac{2}{3}xyz.\left(-6x^2y\right).\left(-xy^2z\right)\)
f)\(\left(-2x^2y\right).\left(\frac{-1}{2}\right)^2.\left(x^2y^3\right)^2\)
1.cho đa thức A=-4x\(^5y^3+x^4y^2-3x^2y^3z^2+4x^5y^3-x^4y^3+x^2y^3z^2-2y^4\)
a.thu gọn rồi tìm bậc đa thức A
b.tìm đa thức B biết rằng B-2x\(^2y^3z^2+\frac{2}{3}y^4-\frac{1}{5}x^4y^3=A\)
2.thu gọn các đơn thức sau rồi chỉ rõ hệ số phần biến và tìm bậc
a.A=x\(^3.\left(\frac{-5}{4}x^2y\right).\left(\frac{2}{5}x^3y^4\right)\)
b.B=\(\left(\frac{-3}{4}x^5y^4\right).\left(xy^2\right).\left(\frac{-8}{9}x^2y^5\right)\)
Tính tích các đơn thức rồi cho biết hệ số và bậc của đơn thức đối với tập hợp các biến số (a,b,c là hằng)
\(\left[\dfrac{-1}{2}\left(a-1\right)x^3y^3z^4\right]^5;\left(a^2b^2xy^2z^{n-1}\right)\left(-b^3cx^4z^{7-n}\right);\left(\dfrac{-8}{15}a^3x^3y\right).\left(\dfrac{-5}{4}ax^5y^2z\right)\)