Tìm m, biết rằng: Q (x) = mx2 + 2mx - 3 có nghiệm x = -1
Tìm m, biết rằng đa thức Q(x) = mx2 + 2mx – 3 có 1 nghiệm x = -1
Thay x=-1 vào đa thức Q, ta được:
\(m\cdot\left(-1\right)^2+2m\cdot\left(-1\right)-3=0\)
\(\Leftrightarrow m-2m-3=0\)
\(\Leftrightarrow-m=3\)
hay m=-3
Bài 1: Chứng minh bất phương trình:
a) x2+2mx+2m+3>0, ∀xϵR
b) mx2+(m-1)x+m+1≤0, ∀xϵR
c) (m-1)x2+2mx+2-3m>0, vô nghiệm
Bài 2: Phương trình: mx2+(m-1)x+1-m=0
a) Có nghiệm
b) Có 2 nghiệm phân biệt
c) Có 2 nghiệm trái dấu
d) Có 2 nghiệm dương phân biệt
e) Có 2 nghiệm âm phân biệt
Bài 2:
a: TH1: m=0
=>-x+1=0
=>x=-1(nhận)
TH2: m<>0
\(\text{Δ}=\left(m-1\right)^2-4m\left(1-m\right)\)
=m^2-2m+1-4m+4m^2
=5m^2-6m+1
=(2m-1)(3m-1)
Để phương trình có nghiệm thì (2m-1)(3m-1)>=0
=>m>=1/2 hoặc m<=1/3
b: Để phương trình có hai nghiệm phân biệt thì (2m-1)(3m-1)>0
=>m>1/2 hoặc m<1/3
c: Để phương trình có hai nghiệmtrái dấu thì (1-m)*m<0
=>m(m-1)>0
=>m>1 hoặc m<0
d: Để phương trình có hai nghiệm dương phân biệt thì
\(\left\{{}\begin{matrix}m\in\left(-\infty;\dfrac{1}{3}\right)\cup\left(\dfrac{1}{2};+\infty\right)\\\dfrac{-m+1}{m}>0\\\dfrac{1-m}{m}>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m\in\left(-\infty;\dfrac{1}{3}\right)\cup\left(\dfrac{1}{2};+\infty\right)\\0< m< 1\end{matrix}\right.\)
=>1/2<m<1
Biết rằng phương trình m x 2 – 4 ( m – 1 ) x + 4 m + 8 = 0 có một trong các nghiệm bằng 3. Tìm nghiệm còn lại của phương trình
A. x = − 6 5
B. x = − 3 x = 6 5
C. x = 6 5
D. x = 5 6
Thay x = 3 vào phương trình:
m.32 – 4(m – 1).3 + 4m + 8 = 0 ⇔ m = −20
Với m = −20 ta có phương trình
−20x2 + 84x – 72 = 0 ⇔ 5x2 – 21x + 18 = 0
Phương trình trên có ∆ = (−21)2 – 4.5.18 = 81 > 0
⇒ Δ = 9 nên có hai nghiệm phân biệt
x = 21 + 9 2.5 = 3 x = 21 − 9 2.5 = 6 5
Vậy nghiệm còn lại của phương trình là x = 6 5
Đáp án cần chọn là: D
a) Tìm nghiệm các đa thức sau \(3x^2+5x+2\)và \(x^2-x-\frac{1}{4}\)
b)Tìm m, biết rằng đa thức Q(x)=mx2+2mx-3 có một nghiệm x=1
Ta có : 3x^2+5x+2=0 3x^2+2x+3x+2=0 (3x^2+2x)+(3x+2)=0 x(3x+2)+(3x+2)=0 (3x+2).(x+1)=0 =>3x+2=0=>x=-2/3 x+1=0=>x=-1
a, Đặt 3x^2 + 5x + 2 = 0
=>3x^2 + 2x + 3x + 2 =0
=>(3x^2 +2x) + (3x+2)=0
=> x(3x+2) + (3x+2) = 0
( 3x+2).(x+1)=0
<=> 3x+2=0 hoặc x+1=0
<=>3x =-2 hoặc x= -1
<=>x=-2/3 hoặc x= -1
Vậy nghiệm đa thức đã cho là x= -2/3 hoặc x= -1
b, Ta có : Q(1)=0
<=> m(1)^2 + 2m(1) - 3 =0
<=> m + 2m = 3
<=>m(1+2) = 3
<=>m = 1
Tìm m , biết rằng đa thức :
P(x) = mx^2+2mx-3 có nghiệm x= -1
Thay x=-1 vào P(x), ta có
P(-1)=m.(-1)2+2.(-1)m-3=0
=>m-2m-3=0
-m-3=0
-m=0+3=3
=>m=-3
Vậy m=-3
A(x) = mx2 + 2mx - 3
A(x) có nghiệm x = -1
=> A(-1) = m.(-1)2 + 2m.(-1) - 3 = 0
=> m - 2m - 3 = 0
=> -m - 3 = 0
=> -m = 3
=> m = -3
Vậy với m = -3 , A(x) có nghiệm x = -1
Bài 1: Tìm x,y biết:
(2x-5)^2012+(3y+4)^2014 ≤ 0
Bài 2:Cho đa thức Q(x)= -2x^2+mx-7m+3. Xác định m biết răng Q(x) có nghiệm là -1.
Bài 3;Tìm m, biết Q(x)= mx^2+2mx-3 có một nghiệm x=-1
Giúp nha mọi người.
A,tìm giá trị của m biết đa thức M(x) =mx2+2mx-3 có 1 nghiệm x=-1
B,chứng tỏ rằng đa thức A(x)=2x3+x chỉ có một nghiệm
A, \(M\left(-1\right)=0\)
\(m\left(-1\right)^2+2m\left(-1\right)-3=0\)
\(-m-3=0\)
\(m=-3\).
B, \(A\left(x\right)=2x^3+x=x\left(2x^2+1\right)=0\)
\(\Leftrightarrow x=0\)vì \(2x^2+1>0\forall x\inℝ\).
A, Xét đa thức \(M\left(x\right)=mx^2+2mx-3\)
\(M\left(-1\right)=m-2m-3\)
Mà \(x=-1\) là 1 nghiệm của \(M\left(x\right)\)
\(\Rightarrow M\left(-1\right)=0\)
\(\Rightarrow m-2m-3=0\)
\(-m-3=0\)
\(\Rightarrow m=-3\)
Vậy \(m=-3\).
B, Cho \(A\left(x\right)=0\Rightarrow2x^3+x=0\)
\(\Rightarrow x\left(2x^2+1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\2x^2+1=0\end{cases}}\)
Ta có: \(2x^2\ge0\forall x\)
\(\Rightarrow2x^2+1>0\)
\(\Rightarrow x=0\) là nghiệm của đa thức \(A\left(x\right)=2x^3+x\)
Vậy đa thức \(A\left(x\right)=2x^3+x\) có 1 nghiệm duy nhất là \(x=0\).
a, Vi x = -1 là nghiệm của đa thức trên nên
Thay x = -1 vào đa thức trên ta được :
\(M\left(x\right)=m-2m-3=-m-3\)
Đặt \(-m-3=0\Leftrightarrow-m=3\Leftrightarrow m=-3\)
Vậy với x = -1 thì m = -3
Tìm m, biết rằng đa thức Q(x) =mx3+2mx-3 có nghiệm là x=-1
\(Q\left(-1\right)=0\)
\(\Leftrightarrow m.\left(-1\right)^3+2.m.\left(-1\right)-3=0\)
\(\Leftrightarrow-m-2m-3=0\)
\(\Leftrightarrow m\left(-1-2\right)-3=0\)
\(\Leftrightarrow m\left(-3\right)=3\)
\(\Leftrightarrow m=-1\)
Vậy ...
1/ Tìm m, biết rằng đa thức Q(x) = mx2 + 2mx + - 3 có 1 nghiệm x = -1
2/ Tính giá trị của biểu thức sau, biết rằng: x + y + 1 = 0
D = x2 ( x + y ) - y2 ( x + y ) + x2 - y2 + 2 ( x + y ) + 3