x(a-x).x(b-x).x(c-x)...x(z-x)
tinh
1, x/y = 9/7;y/z = 7/9 va x-y+z=-15
b.6/11 x= 9/2 y=18/5z va -x+y+z=3
c,x/5=y/7=z/3 va x^2+y^2-z^2=585io
d,cho x/y/z =5/4/3 tinh P=x+2y-3z/x-2y+3z
e,cho 2a+b+c/a = a+2b+c/b = a+b+2c/c tinh S=a+b/c + b+c/a + c+a/b
cho x+y+z=a ;x^2+ y^2 + z^2=b^2 ; 1/x+1/y+1/z=1/c . Tinh x^3+y^3+z^3 theo a,b,c
cho a/x=b/y=c/z=1/5 va x+y+z khac 0 tinh A=x+y+z/a+b+c
Áp dụng tính chất dãy tỉ số bằng nhau ta có
\(\frac{a}{x}=\frac{b}{y}=\frac{c}{z}=\frac{a+b+c}{x+y+z}=\frac{1}{5}\)
\(\Rightarrow A=\frac{x+y+z}{a+b+c}=\frac{5}{1}=5\)
Vậy A = 5
tinh
a)(x-y-z)(x-y)+(y-x-z)(z-x)+(z-x-y)(y-z)
b)3x^n-2(x^n+2-y^n+2)+y^n+2(3x^n-2-y^n-2)
c)(a+b+c)(a^2+b^2+c^2-ab-bc-ca)
b: \(=3x^{n-2+n+2}-3x^{n-2}y^{n+2}+3x^{n-2}y^{n+2}-y^{n+2+n-2}\)
\(=3x^{2n}-y^{2n}\)
c: \(=a^3+ab^2+ac^2-a^2b-abc-a^2c+a^2b+b^3+bc^2-ab^2-b^2c-abc+a^2c+b^2c+c^3-abc-bc^2-ca^2\)
\(=a^3+b^3+c^3-3acb\)
cho x/a+y/b+z/c=0 và a/x+b/y+c/z=2 tinh A=x^2/a^2+y^2/b^2+z^2/c^2
THam khảo tại đây:
Câu hỏi của Vũ khoa - Toán lớp 8 - Học toán với OnlineMath
cho a/x=b/y=c/z va x+y+z khac 0;x-3y+2z khac 0.tinh gia tri cua cac bieu thuc :a,M=a+b+c/x+y+z
N=a-3b+2c/x-3y+2z
cho x,y,z thoa man 2/x+y + 2/y+z + 2/z+x = 1007x/x+y +1007y/y+z +1007z/z+x .
tinh S=a+b+c
giai nhanh nha can gap
x+y+z=1007/2=503.5
bạn chuyển vế đổi dấu mới dc như thế nhé
1. Cho \(\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}=1.\)
Tinh \(A=\frac{x^2+y^2-z^2}{y+z}+\frac{-x^2+y^2+z^2}{z+x}+\frac{x^2-y^2+z^2}{x+y}\)
2. Cho a,b,c>0 va ab+bc+ca=1. Tinh gia tri \(A=a+b-\sqrt{\frac{\left(1+a^2\right)\left(1+b^2\right)}{\left(1+c^2\right)}}\)
1) A = \(\frac{x^2+\left(y-z\right)\left(y+z\right)}{y+z}+\frac{y^2+\left(z-x\right)\left(z+x\right)}{z+x}+\frac{\left(x-y\right)\left(x+y\right)+z^2}{x+y}\)
A = \(\frac{x^2}{y+z}+\left(y-z\right)+\frac{y^2}{z+x}+\left(z-x\right)+\left(x-y\right)+\frac{z^2}{x+y}\)
A = \(\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\)
Nhân cả hai vế của \(\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}=1\) với x ta được:
\(\frac{x^2}{y+z}+\frac{yx}{z+x}+\frac{zx}{x+y}=x\)
Tương tự, ta nhân hai vế với y; z rồi cộng từng vế 2 đẳng thức với nhau ta được:
\(\left(\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\right)+\left(\frac{xy}{z+x}+\frac{yz}{z+x}\right)+\left(\frac{xy}{y+z}+\frac{xz}{y+z}\right)+\left(\frac{zx}{x+y}+\frac{yz}{x+y}\right)=x+y+z\)
=> A + \(\frac{\left(x+z\right)y}{z+x}+\frac{\left(y+z\right)x}{y+z}+\frac{z\left(x+y\right)}{x+y}\) = x+ y + z
=> A + y + x + z = x + y + z
=> A = 0
Vậy A = 0
1.Cho a + c = 2b và 2bd = c( b + d ) ( b,d khác 0) Chứng minh a/b = c/d
2. cho x, y, z là 3 số dương riêng biệt . hay tinh ti so x/y biet y/ -x+z = x-y/z = -x/y