Cho dãy tỉ số : b*z - c*y / a = c*x - a*z / b = a*y - b*x / c . Chứng minh rằng x/a = y/b = z/c
Bài 1: Cho 4 số a,b,c,d thỏa mãn \(b^2=ac;c^2=bd\\ \) . Chứng minh \(\dfrac{a}{d}=\left(\dfrac{a+b+c}{b+c+d}\right)^3\)
Bài 2 : Cho \(\dfrac{a}{b}=\dfrac{c}{d}\). Chứng minh
a) \(\dfrac{7a^2+3ab}{11a^2-8b^2}=\dfrac{7c^2+3cd}{11c^2-8d^2}\)
b) \(\dfrac{ab}{cd}=\dfrac{a^2-b^2}{c^2-d^2}\)
Bài 3 : CMR : Nếu a(y+z)=b(z+x)=c(x+y) trong đó a,b,c là các số thực khác nhau thì \(\dfrac{y-z}{a\left(b-c\right)}=\dfrac{z-x}{b\left(c-a\right)}=\dfrac{x-y}{c\left(a-b\right)}\)
Bài 4 : Cho \(\dfrac{bz-cy}{a}=\dfrac{cx-az}{b}=\dfrac{ay-bx}{c}\). Chứng minh \(\dfrac{x}{a}=\dfrac{y}{b}=\dfrac{z}{c}\)
Bài 5 : CMR : Nếu \(\dfrac{x}{a+2b+c}=\dfrac{y}{2a+b-c}=\dfrac{z}{4a-4b+c}\) thì \(\dfrac{a}{x+2y+z}=\dfrac{b}{2x+y-z}=\dfrac{c}{4x-4y+z}\)
1. Cho dãy tỉ số bằng nhau: \(\dfrac{x}{a+2b+c}=\dfrac{y}{2a+b-c}=\dfrac{z}{4a-4b+c}\)
Chứng minh rằng: \(\dfrac{a}{x+2y+z}=\dfrac{b}{2x+y-z}=\dfrac{c}{4x-4y+z}\)
2. Chứng minh rằng nếu có \(\dfrac{a}{x}=\dfrac{b}{y}=\dfrac{c}{z}\) thì giá trị của tỉ số \(\dfrac{ak+bk+c}{xk^2+yk+z}\) không phụ thuộc vào giá trị của k
Cho các số a,b,c,d khác 0. Tính \(T=x^{2017}+y^{2017}+z^{2017}+t^{2017}\)
Biết x,y,z,t thỏa mãn: \(\dfrac{x^{2016}+y^{2016}+z^{2016}+t^{2016}}{a^2+b^2+c^2+d^2}=\dfrac{x^{2016}}{a^2}+\dfrac{y^{2016}}{b^2}+\dfrac{z^{2016}}{c^2}+\dfrac{t^{2016}}{d^2}\)
cho a(y+z)=b(z+x)=c(x+y) chứng minh \(\dfrac{y-z}{a\left(b-c\right)}=\dfrac{z-x}{b\left(c-a\right)}=\dfrac{x-y}{c\left(a-b\right)}\)
Cho \(x=\frac{a}{b}\)
\(y=\frac{c}{d}\left(x< y\right)\)
\(z=\frac{m}{n}\left(b;d>0\right)\)
và \(m=\frac{a+c}{2}\)
\(n=\frac{b+d}{2}\)
So sánh x với z ; y với z
a.Tìm x, y, z biết \(\frac{x}{3}=\frac{y}{4};\frac{y}{5}=\frac{z}{7}\) và 2x+3y-z=186
b. Tìm các số a, b, c, d. Biết a:b:c:d=2:3:4:5 và 3a+b-2c+4d=105
c. Timd x, y, z biết \(\left(2x-3\right)^2+\left|2y+3\right|+\left|1-z\right|=0\)
Tìm x,y,z biết:
a, x = y/6 = z/3
b, x/2 = y = z/3
c, x/6 = y/3 = z/3
d, x/2 = y/3 = z/4
e, x/2 = y/-2 = z/5
f, x/2 = y/-3 = z/4
1,So sánh số hữu tỉ a/b(a,b thuộc Z,b khác 0)với số 0 khi a,b cùng cấu và khi a,b khác dấu
2,Giả sử x=a/m,y=b/m(a,b,m thuộc Z,m>0) và x<y.Hãy chứng tỏ rằng nếu chọn z=a+b/2m thì ta có x<z<y
Giúp em với em cần gấp!