Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Linh Giang Vương
Xem chi tiết
Nguyễn Lê Phước Thịnh
6 tháng 1 2021 lúc 13:35

a) Ta có: ΔABC vuông tại A(gt)

nên \(\widehat{ABC}+\widehat{ACB}=90^0\)(hai góc nhọn phụ nhau)

\(\Leftrightarrow\widehat{ACB}=90^0-\widehat{ABC}\)

\(\Leftrightarrow\widehat{ACB}=90^0-60^0\)

hay \(\widehat{ACB}=30^0\)

Vậy: \(\widehat{ACB}=30^0\)

b) Xét ΔADB và ΔEDB có 

BA=BE(gt)

\(\widehat{ABD}=\widehat{EBD}\)(BD là tia phân giác của \(\widehat{ABE}\))

BD chung

Do đó: ΔADB=ΔEDB(c-g-c)

nên \(\widehat{BAD}=\widehat{BED}\)(hai góc tương ứng)

mà \(\widehat{BAD}=90^0\)(ΔABC vuông tại A)

nên \(\widehat{BED}=90^0\)

hay DE\(\perp\)BC(đpcm)

c) Ta có: BE+EC=BC(E nằm giữa B và C)

BA+AM=BM(A nằm giữa B và M)

mà BE=BA(ΔBED=ΔBAD)

và BC=BM(gt)

nên EC=AM

Xét ΔADM vuông tại A và ΔEDC vuông tại E có 

DA=DE(ΔDAB=ΔDEB)

AM=EC(cmt)

Do đó: ΔADM=ΔEDC(hai cạnh góc vuông)

nên \(\widehat{ADM}=\widehat{EDC}\)(hai góc tương ứng)

mà \(\widehat{EDC}+\widehat{ADE}=180^0\)(hai góc kề bù)

nên \(\widehat{ADM}+\widehat{ADE}=180^0\)

\(\Leftrightarrow\widehat{EDM}=180^0\)

hay E,D,M thẳng hàng(đpcm)

Cấn Minh Vy
Xem chi tiết
Trần Thị Cu
Xem chi tiết
Nguyễn Hoàng Minh
30 tháng 10 2021 lúc 11:12

\(\sin^2\alpha+\cos^2\alpha=1\Leftrightarrow\sin^2\alpha=1-\dfrac{1}{16}=\dfrac{15}{16}\\ \Leftrightarrow\sin\alpha=\dfrac{\sqrt{15}}{4}\\ \cot\alpha=\dfrac{\cos\alpha}{\sin\alpha}=\dfrac{1}{4}\cdot\dfrac{4}{\sqrt{15}}=\dfrac{1}{\sqrt{15}}=\dfrac{\sqrt{15}}{15}\)

Hoa Thiên Cốt
Xem chi tiết

Bài làm

a) Xét tam ABC vuông tại A có:

\(\widehat{ACB}+\widehat{ABC}=90^0\)( hai góc phụ nhau )

hay \(\widehat{ACB}+60^0=90^0\)

=> \(\widehat{ACB}=90^0-60^0=30^0\)

b) Xét tam giác ABE và tam giác DBE có:

\(\widehat{BAE}=\widehat{BDE}=90^0\)

Cạnh huyền: BE chung

Cạnh góc vuông: AB = BD ( gt )

=> Tam giác ABE = tam giác DBE ( cạnh huyền - cạnh góc vuông )

=> \(\widehat{ABE}=\widehat{DBE}\)( hai góc tương ứng )

=> BI là tia phân giác của góc BAC

Mà I thược BE

=> BE là tia phân giác của góc BAC

Gọi I là giao điểm BE và AD

Xét tam giác AIB và tam giác DIB có:

AB = BD ( gt )

\(\widehat{ABE}=\widehat{DBE}\)( cmt )

BI chung

=> Tam giác AIB = tam giác DIB ( c.g.c )

=> AI = ID                                                                 (1) 

=> \(\widehat{BIA}=\widehat{BID}\)

Ta có: \(\widehat{BIA}+\widehat{BID}=180^0\)( hai góc kề bù )

Hay \(\widehat{BIA}=\widehat{BID}=\frac{180^0}{2}=90^0\)

=> BI vuông góc với AD tại I                                                       (2) 

Từ (1) và (2) => BI là đường trung trực của đoạn AD

Mà I thược BE

=> BE là đường trung trực của đoạn AD ( đpcm )

c) Vì tam giác ABE = tam giác DBE ( cmt )

=> AE = ED ( hai cạnh tương ứng )

Xét tam giác AEF và tam giác DEC có:

\(\widehat{EAF}=\widehat{EDC}=90^0\)

AE = ED ( cmt )

\(\widehat{AEF}=\widehat{DEF}\)( hai góc đối )

=> Tam giác AEF = tam giác DEC ( g.c.g )

=> AF = DC 

Ta có: AF + AB = BF

          DC + BD = BC

Mà AF = DC ( cmt )

AB = BD ( gt )

=> BF = BC 

=> Tam giác BFC cân tại B

=> \(\widehat{BFC}=\widehat{BCF}=\frac{180^0-\widehat{FBC}}{2}\)                                                          (3) 

Vì tam giác BAD cân tại B ( cmt )

=> \(\widehat{BAD}=\widehat{BDA}=\frac{180^0-\widehat{FBC}}{2}\)                                               (4)

Từ (3) và (4) => \(\widehat{BAD}=\widehat{BFC}\)

Mà Hai góc này ở vị trí đồng vị

=> AD // FC

d) Xét tam giác ABC vuông tại A có:

\(\widehat{ACB}+\widehat{ABC}=90^0\)( hai góc phụ nhau )                              (5)

Xét tam giác DEC vuông tại D có:

\(\widehat{DEC}+\widehat{ACB}=90^0\)( hai góc phụ nhau )                                (6)

Từ (5) và (6) => \(\widehat{ABC}=\widehat{DEC}\)

Ta lại có:

\(\widehat{ABC}>\widehat{EBC}\)

=> AC > EC

Mà \(\widehat{EBC}=\frac{1}{2}\widehat{ABC}\)

=> EC = 1/2 AC. 

=> E là trung điểm AC

Mà EC = EF ( do tam giác AEF = tam giác EDC )

=> EF = 1/2AC 

=> AE = EC = EF 

Và AE = ED ( cmt )

=> ED = EC

Mà EC = 1/2AC ( cmt )

=> ED = 1/2AC

=> 2ED = AC ( đpcm )

Mình chứng minh ra kiểu này cơ. không biết đề đúng hay sai!?? 

Khách vãng lai đã xóa
Ha Thi Thuy Duong
Xem chi tiết
o0o Đinh Huy Lành o0o
17 tháng 5 2016 lúc 11:07

mình mới lớp 5 thôi à

Nguyen Tien Hoc
Xem chi tiết
Nguyễn Lê Phước Thịnh
3 tháng 1 2022 lúc 15:06

a: \(\widehat{C}=90^0-60^0=30^0\)

b: Xét ΔBAD và ΔBED có 

BA=BE

\(\widehat{ABD}=\widehat{EBD}\)

BD chung

Do đó: ΔBAD=ΔBED

Suy ra: \(\widehat{BAD}=\widehat{BED}=90^0\)

hay DE⊥CB

Nguyễn Phương Thảo
Xem chi tiết
Nguyễn Hồng Nhung
Xem chi tiết
Đỗ Thanh Hải
1 tháng 3 2021 lúc 18:45

a) Xét tam giác ABD và KBD có :

\(\widehat{BAD}=\widehat{BKD}=90^o\)

BD chung

\(\widehat{ABD}=\widehat{KBD}\left(gt\right)\)

=> tam giác ABD = tam giác KBD (ch-gn)

b) Tam giác ABD = tam giác KBD => AB = KB (2 cạnh tương ứng)

c) tam giác ABD = tam giác KBD => AD = KD (2 cạnh tương ứng)

Xét tam giác ADH và tam giác KDC có 

\(\widehat{ADH}=\widehat{KDC}\)(đối đỉnh)

AD = KD(cmt)

\(\widehat{DAH}=\widehat{DKC}=90^o\)

=> tam giác ADH = tam giác KDC (g.c.g)

=> DH = DC (2 cạnh tg ứng)

=> tam giác DCH cân tại D

=> \(\widehat{DCH}=\widehat{DHC}\)

Đức Hiếu
1 tháng 3 2021 lúc 18:45

a, Xét tam giác ABD vuông tại A và tam giác KBD vuông tại K ta có: 

BD: cạnh chung; \(\widehat{ABD}=\widehat{KBD}\)

Do đó \(\Delta ABD=\Delta KBD\) 

b, Vì  \(\Delta ABD=\Delta KBD\) nên $AB=KB;AD=KD$ 

c, Xét tam giác ADH vuông tại A và tam giác KDC vuông tại K ta có: 

$AD=KD(cmt)$;\(\widehat{ADH}=\widehat{KDC}\)(dd)

Do đó \(\Delta ADH=\Delta KDC\)

Hay DH=DC. Suy ra \(\widehat{DHC}=\widehat{DCH}\)

Hồ Nam Anh
Xem chi tiết
KAl(SO4)2·12H2O
1 tháng 3 2019 lúc 14:21

\(B=\frac{1}{4}\left(a^2b^2\right)2ab\) tại a = 1, b = |2|

\(B=\frac{1}{4}\left(1^2.2^2\right)2.1.2\)

\(B=\frac{1}{4}.4.2.1.2\)

\(B=4\)