Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
hoang le ha phuong
Xem chi tiết
hoang le ha phuong
Xem chi tiết
Trà My
7 tháng 7 2017 lúc 15:41

bạn nói với mình điều kiện x>2 vậy làm như sau:

Đặt:\(A=\frac{3x-x^2-18}{x-2}=-\frac{x^2-3x+18}{x-2}=-\frac{x^2-4x+4+x-2+16}{x-2}\)

\(=-\frac{\left(x-2\right)^2+\left(x-2\right)+16}{x-2}\)\(=-\left(x-2+1+\frac{16}{x-2}\right)\)

Áp dụng bđt Cô si cho 2 số dương ta được: \(x-2+\frac{16}{x-2}\ge2\sqrt{\left(x-2\right).\frac{16}{x-2}}=8\)

=>\(x-2+\frac{16}{x-2}+1\ge9\)=>\(A=-\left(x-2+1+\frac{16}{x-2}\right)\le-9\)

=> maxA=-9 <=> x=6

hong pham
Xem chi tiết
Nguyễn Nhật Minh
4 tháng 11 2017 lúc 14:08
Đừng bumhiacopski chủ giá
Văn Hiển Đoàn
Xem chi tiết
Diệu Huyền
26 tháng 11 2019 lúc 10:23

\(x^2+y^2\ge2\sqrt{x^2y^2}\ge2xy\)

\(x^2y^2+1\ge2\sqrt{x^2y^2.1}\ge2xy\)

\(\Rightarrow x^2+y^2+x^2.y^2+1\ge2xy+2xy=4xy\)

Khách vãng lai đã xóa
tran duc huy
Xem chi tiết
Nguyễn Việt Lâm
16 tháng 11 2019 lúc 13:12

Điều kiện \(a>0\)

\(A=\sqrt[4]{\frac{3}{4a}}.\sqrt[4]{\frac{4a}{3}}.x\sqrt{a-x^4}\le\sqrt[4]{\frac{3}{4a}}\left(-x^4+\sqrt{\frac{4a}{3}}x^2+a\right)\)

\(A\le\sqrt[4]{\frac{3}{4a}}\left[\frac{4a}{3}-\left(x^2-\sqrt{\frac{a}{3}}\right)^2\right]\le\frac{4a}{3}\sqrt[4]{\frac{3}{4a}}\)

Dấu "=" xảy ra khi \(x=\sqrt[4]{\frac{a}{3}}\)

Khách vãng lai đã xóa
miko hậu đậu
Xem chi tiết
Nguyễn Minh Tuấn
20 tháng 8 2017 lúc 15:48

mình ko biết, bạn k nha

Nàng công chúa lạnh lùng
20 tháng 8 2017 lúc 15:51

Cái cậu Nguyễn Minh Tuấn kia đã không lm bài rồi lại còn yêu cầu người khác k nữa

miko hậu đậu
20 tháng 8 2017 lúc 15:57

Nàng công chúa lạnh lùng bạn biết ko 

Tung Nguyễn
Xem chi tiết
Nguyễn Thị Thanh Trúc
Xem chi tiết
Diệu Anh Hoàng
Xem chi tiết