Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
nguyen thi ngan
Xem chi tiết
le khanh loan
28 tháng 12 2016 lúc 10:38

5^2005+5^2003

= 5^2003(5^2+1)

= 5^2003.26

=5^2003.13.2

Nguyễn Minh Htk
Xem chi tiết
Lê Nguyên Hạo
5 tháng 7 2016 lúc 17:15

52005+52003
=52003.(52+1) 
=52003.26 
=52003.13.2 

Vì 13 chia hết cho 13 nên 52003 . 13 . 2 chia hết 13

Vậy: 52005+52003

nguyen tat thanh
Xem chi tiết
Princess Rose
Xem chi tiết
Không Tên
24 tháng 7 2018 lúc 14:29

\(5^{2005}+5^{2003}\)

\(=5^{2003}.\left(5^2+1\right)\)

\(=5^{2003}.26\)

\(=5^{2003}.2.13\)\(⋮\)\(13\)

Pham Van Hung
24 tháng 7 2018 lúc 14:27

5^2005 + 5^2003 = 5^2003 (5^2 +1)

                         = 5^2003 .26 chia hết cho 13

ST
24 tháng 7 2018 lúc 14:28

\(5^{2005}+5^{2003}=5^{2003}\left(5^2+1\right)=5^{2003}.26=5^{2003}.13.2⋮13\)

Princess Rose
Xem chi tiết
Kyun Diệp
Xem chi tiết
Trần Minh Hoàng
17 tháng 12 2018 lúc 18:01

a) Ta có:

\(5^2=25\equiv-1\left(mod13\right)\)

\(\Rightarrow\left\{{}\begin{matrix}5^{2004}=\left(5^2\right)^{1002}\equiv\left(-1\right)^{1002}\left(mod13\right)\equiv1\left(mod13\right)\\5^{2002}=\left(5^2\right)^{1001}\equiv\left(-1\right)^{1001}\left(mod13\right)\equiv-1\left(mod13\right)\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}5^{2005}=5^{2004}.5\equiv1.5\left(mod13\right)\equiv5\left(mod13\right)\\5^{2003}=5^{2002}.5\equiv\left(-1\right).5\left(mod13\right)\equiv-5\left(mod13\right)\end{matrix}\right.\)

\(\Rightarrow5^{2005}+5^{2003}\equiv5+\left(-5\right)\left(mod13\right)\equiv0\left(mod13\right)\)

Vậy...

Phạm Thị Cẩm Huyền
Xem chi tiết
Đạt Trần Tiến
5 tháng 12 2017 lúc 21:49

Bài 1:

a,\(5^{2005}+5^{2003}=5^{2003}(25+1)=26.5^{2003}\vdots13(đpcm)\)

b,\(a^2+b^2+1\ge ab+a+b\)

<=>\(2a^2+2b^2+2\ge2ab+2a+2b\)

<=>\((a^2-2ab+b^2)+(a^2-2a+1)+(b^2-2b+1)\ge0\)

<=>\((a-b)^2+(a-1)^2+(b-1)^2\ge0(tm)\)

=> đpcm

Komorebi
5 tháng 12 2017 lúc 21:53

a) 52005 + 52003 = 52003 ( 52 + 1 ) = 52003 . 26 = 52003 . 2 .13

=> 52005 + 52003 chia hết cho 13

b) a2 + b2 +1 \(\ge\) ab + a + b

\(\Leftrightarrow\) 2a2 + 2b2 + 2 ≥ 2ab + 2a + 2b

\(\Leftrightarrow\)(a2 − 2ab + b2) + (a2 − 2a + 1) + (b2 − 2b + 1) ≥ 0

\(\Leftrightarrow\) (a − b)2 + (a − 1)2 + (b − 1)2 ≥ 0

Bá đạo THCS
Xem chi tiết
SKT_ Lạnh _ Lùng
15 tháng 10 2016 lúc 14:12

a)2004100+200499=200499(2004+1)=201499.2005

=>201499.2005chia hết cho 2005

=> 2004100+200499 chia hết cho 2005

b) 413+325-88

=(22)13+(25)5-(23)8

=226+225-224

=224(22+2-1)

=225.5

=>225chia hết cho 5 => 413+325-88 chia hết cho 5

Hakai Nguyen
Xem chi tiết
Thiên Hàn
28 tháng 8 2018 lúc 8:21

a) Ta có:

\(n\left(2n-3\right)-2n\left(n+1\right)\)

\(=2n^2-3n-2n^2-2n\)

\(=-5n\)

\(-5n⋮5\) với n thuộc Z

\(\Rightarrow n\left(2n-3\right)-2n\left(n+1\right)⋮5\) với n thuộc Z

b) Ta có:

\(\left(n^2+3n-1\right)\left(n+2\right)-n^3+2\)

\(=n^3+3n^2-n+2n^2+6n-2-n^3+2\)

\(=5n^2+5n\)

\(=5\left(n^2+n\right)\)

\(5\left(n^2+n\right)⋮5\)

\(\Rightarrow\left(n^2+3n-1\right)\left(n+2\right)-n^3+2⋮5\)

c) Ta có:

\(\left(xy-1\right)\left(x^{2003}+y^{2003}\right)-\left(xy+1\right)\left(x^{2003}-y^{2003}\right)\)

\(=\left(xy+1-2\right)\left(x^{2003}+y^{2003}\right)-\left(xy+1\right)\left(x^{2003}-y^{2003}\right)\)

\(=\left(xy+1\right)\left(x^{2003}+y^{2003}\right)-2\left(x^{2003}+y^{2003}\right)-\left(xy+1\right)\left(x^{2003}-y^{2003}\right)\)

\(=\left(xy+1\right)\left(x^{2003}+y^{2003}-x^{2003}+y^{2003}\right)-2\left(x^{2003}+y^{2003}\right)\)

\(=2\left(xy+1\right)y^{2003}-2\left(x^{2003}+y^{2003}\right)\)

\(2\left(xy+1\right)y^{2003}⋮2\)

\(2\left(x^{2003}+y^{2003}\right)⋮2\)

\(\Rightarrow2\left(xy+1\right)y^{2003}-2\left(x^{2003}+y^{2003}\right)⋮2\)

\(\Rightarrow\left(xy-1\right)\left(x^{2003}+y^{2003}\right)-\left(xy+1\right)\left(x^{2003}-y^{2003}\right)⋮2\)